

NLS-Soldier100&160 系列固定式工业条码扫描器

用户手册

免责声明

请您在使用本手册描述的产品前仔细阅读手册的所有内容,以保障产品的安全有效地使用。阅读后请将本手册妥善保存以备下次使用时查询。

请勿自行拆卸终端或撕毁终端上的封标,否则福建新大陆自动识别技术有限公司不承担保修或更换终端的责任。

本手册中的图片仅供参考,如有个别图片与实际产品不符,请以实际产品为准。对于本产品的改良更新,新大陆自动识别技术有限公司保留随时修改文档而不另行通知的权利。

本手册包含的所有信息受版权的保护,福建新大陆自动识别技术有限公司保留所有权利,未经书面许可,任何单位及个人不得以任何方式或理由对本文档全部或部分内容进行任何形式的摘抄、复制或与其它产品捆绑使用、销售。

本手册中描述的产品中可能包括福建新大陆自动识别技术有限公司或第三方享有版权的软件,除非获得相关权利人的许可,否则任何单位或者个人不能以任何形式对前述软件进行复制、分发、修改、摘录、反编译、反汇编、解密、反相工程、出租、转让、分许可以及其它侵犯软件版权的行为。

福建新大陆自动识别技术有限公司对本声明拥有最终解释权。

版本记录

版	本号	版本描述	发布日期
V	/1.0	初始版本。	2020.12.1

注:该文档适用于 SOLDIER100/160_V1.02.001 固件版本。

目 录

則 膏		•••••••••
	简介	1
	章节纲要	1
	关于本指南	2
	手册图例	
第一章	关于 Soldier100/160 系列产品	
	· · · · · · · · · · · · · · · · · · ·	
	设备主要特点	
	型号	
	包装内配件清单	
	设备参数规格	
	外观说明	
	指示灯说明	
	识读角度说明	
	DB15 数据线接口定义	
	I/O 接口说明	
	通讯端口	
	连接至主机	
	USB/RS232/以太网数据线连接	
	USD(RS232/以太网数据线连接	
本一主	年近与休养	
弗 —早	即套工共Nset	
	NSet	
	多码扫码	
	突发模式	
	テ及侯八	
	见过应侯以	
	多区域胜钨(ROI)	
** — *		
弗二早	系统设置	
	简介	
	设置码	
	设置命令	
	Nset 设置	
	设置标识	
	设置码信息	
	照明灯	
	照明灯选择	
	照明灯亮度	
	瞄准灯	
	LED 灯设置	
	解码成功 LED 灯设置	
	解码成功 LED 灯持续时间设置	
	提示音	
	开机提示音	26

解码成功声音设置	
解码成功声音持续时间设置	
解码成功声音频率设置	28
解码成功声音次数设置	
解码成功声音间隔时间设置	
识读模式	
一次读码超时	
延迟设置	
重读延迟	
重读延迟时间	
读码成功延迟	
读码成功延迟时间	
解码超时	
识读偏好	
曝光设置	
曝光参数限定	
增益参数限定	
串行触发指令	
修改启动读码指令	
修改停止读码指令	39
解码中心区域	40
禁止/允许读码	
传送读码未成功信息	
修改读码未成功信息(NGR 信息)	
图像预处理	
多码同图	
多码输出个数	
多码输出模式	
条码排序规则	
修改多码分隔符	43
触发信号极性	
读码成功指示信号(O1 信号)	
读码成功指示信号极性	
读码成功指示信号持续时间	
读码成功指示信号输出延迟时间	
读码未成功指示信号(O2 信号)	
读码未成功指示信号极性	
读码未成功指示信号持续时间	
读码未成功指示信号输出延迟时间	49
自学习	
使用按键启动自学习	
启动自动学习	50
默认设置	
出厂默认设置	51
用户默认设置	
产品信息查询	52
查询系统信息	
查询产品名称	
查询固件版本号	
查询解码器版本号	54

	查询硬件信息	54
	查询产品序列号	54
	查询产品生产日期	55
	查询产品 OEM 序列号	
第四章	以太网通讯设置	
<i>></i> 1	快速设置以太网通讯	
	设备 IP 配置	
	多码数据输出通道设置	
第五章	USB 通讯设置	
м тт	简介	
	USB 键盘	
	国家键盘布局	
	未知字符提示音	
	键盘仿真输入字符	
	控制字符输出	
	控制字符对应表	
	控制字符对应表(续)	
	按键延迟	
	大写锁定设置	
	大小写转换	
	模拟数字小键盘	
	笑以奴子小娃盘 轮询速度	
	北 印述及USB CDC 串口	
	HID POS (POS HID Bar Code Scanner)	
	简介	
	软件编程访问设备的方法	
	获取扫描数据	
	发送数据到设备	
	VID 和 PID 表	
杂小寺	VID 和 FID 衣	
郑八早	简介	
	波特率	
	- 放行学	
	可两仪验于行	
	—————————————————————————————————————	
签上会		
舟 山早	· 宋问 多	
	ョカ	
	绿豆以且	88

	禁止所有条码	
	使能所有一维码	
	禁止所有一维码	
	使能所有二维条码	
	禁止所有二维条码	
	全局快速解码提升	
	图像亮度适配 1	
	图像亮度适配 2	
	1D 解码复杂度	
	1D 正反相	
	Code 11	
	恢复出厂默认	93

使能/禁止识读	93
设置读码长度	
校验	
传送校验字符	
Code 128	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
区de 39	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
起始符与终止符 Full ASCII	
GS1-128 (UCC/EAN-128)	
恢复出厂默认	
使能/禁止识读	
世紀宗正以映	
恢复出厂默认	
使能/禁止识读	
世紀/奈正 以 以	
恢复出厂默认	
使能/禁止识读	
文記/示正 (以) Codabar	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
起始符与终止符	
起始符与终止符格式	
Code 93 恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
UPC-A	
恢复出厂默认	
使能/禁止识读	
传送校验字符	
2位扩展码	
5 位扩展码	
必须附加扩展码	
扩展码分隔符	
传送前导字符	
UPC-E	
恢复出厂默认	
使能/禁止识读	
传送校验字符	
2 位扩展码	
5 位扩展码	117

必须附加扩展码	118
扩展码分隔符	118
传送前导字符	119
转换为 UPC-A	
EAN-8	
恢复出厂默认	121
使能/禁止识读	
传送校验字符	
2 位扩展码	
5 位扩展码	
必须附加扩展码	
扩展码分隔符	
转换为 EAN-13	
EAN-13	
恢复出厂默认	
使能/禁止识读	
传送校验字符	
2位扩展码	
5 位扩展码	
必须附加扩展码	
扩展码分隔符	
EAN-13 以 290 起始必须有扩展码	
EAN-13 以 378/379 起始必须有扩展码	
EAN-13 以 414/419 起始必须有扩展码	
EAN-13 以 434/439 起始必须有扩展码	
EAN-13 以 977 起始必须有扩展码	
EAN-13 以 978 起始必须有扩展码	
EAN-13 以 979 起始必须有扩展码	
ISBN	
恢复出厂默认	
使能/禁止识读	
ISBN 格式	
ISSN	
恢复出厂默认	
使能/禁止识读	
Interleaved 2 of 5	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	_
Matrix 2 of 5	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
Industrial 2/5	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
ITF-14	144

恢复出厂默认	144
使能/禁止识读	144
ITF-6	
恢复出厂默认	145
使能/禁止识读	145
Standard 2/5	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
以且以问以及 校验	
D * * ***	
COOP 25	-
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
Deutsche 14	
恢复出厂默认	
使能/禁止识读	
Deutsche 12	
恢复出厂默认	
使能/禁止识读	
Plessey	154
恢复出厂默认	154
使能/禁止识读	154
设置读码长度	155
校验	
MSI Plessey	
恢复出厂默认	
使能/禁止识读	
设置读码长度	
校验	
PDF417 恢复出厂默认	
使能/禁止识读	
设置读码长度	
PDF417 反相	
ECI 输出	
字符编码方式	163
QR Code	165
恢复出厂默认	165
使能/禁止识读	165
设置读码长度	165
QR 正反相	
字符编码方式	
ECI 输出	
QR 解码复杂度	
连续码 ******************************	
打点码	
镜像码	
QR 模型 1	170

	QR 模型 2	170
	Micro QR	
	Data Matrix	
	恢复出厂默认	172
	使能/禁止识读	172
	设置读码长度	172
	矩形码	
	Data Matrix 正反相	
	字符编码方式	
	ECI 输出	
	ECC200	
	ECC0TO140	
	DM 解码复杂度	175
	连续码	176
	打点码	176
	镜像码	177
第八章	· 数据格式编辑	178
	开启/关闭数据格式编辑	
	添加数据格式	
	清除数据格式	
	选择数据格式	
	单次使用数据格式	
	数据格式不匹配错误提示音	
	查询数据格式	
	数据格式编辑命令	
	发送命令	
	移动命令	
	搜索命令	
	其他命令	
第九章	前后缀设置	
>147 G T	简介	
	综合设置	
	所有前后缀	
	前缀顺序	
	自定义前缀	
	修改自定义前缀	
	AIM ID 前缀	
	Code ID 前缀	
	默认 Code ID	
	修改 Code ID	
	自定义后缀	
	修改自定义后缀	
	结束符后缀	
	修改结束符后缀	
给上		
オー早	: 批处理设置	
	生成批处理指令	
	制作批处理条码	
	使用批处理条码	
附基	使用机处理条约	
M. [14		

数据码	209
保存或取消	
默认设置表	
AIM ID 列表	
Code ID 列表	
条码序号对照表	
ASCII 码表	

前言

简介

全新的固定式工业条码扫描器 NLS-Soldier100/160 系列 采用新一代工业解码算法,拥有卓越的条码读取性能,可快速识读镭雕、打点等直接元件标识(DPM)条码,并且内置灵活且功能强大的红色环形光源和白色点光源,可以适应不同的扫描场景。它体积小巧,适合用在较为紧凑的工业环境中,IP65 的防护等级保证了它可以处理各种恶劣复杂的工作环境。另外,Soldier100/160 集成了以太网端口,RS232 端口以及 USB 端口,并支持 IO 输入输出端口,满足用户不同应用环境下的多种接口配置需求,是应用在电子、汽配、金属制造业、新能源等行业的理想产品。

本手册主要向用户介绍新大陆自动识别公司所设计的全新一代固定式工业条码扫描器 NLS-soldier100/160 的规格参数、功能和详细使用方法。

章节纲要

《第一章 关于 soldier100/160/160 系列 介绍 soldier100/160 系列的产品规格、参数信息

产品》

《第二章 配套工具》 介绍配套工具 Nset 的功能

《第三章 系统设置》 介绍扫描器的主要设置方法以及系统参数的设置

《第四章 以太网通讯设置》 描述以太网通讯参数的设置 《第五章 USB 通讯设置》 描述 USB 通讯参数的设置 《第六章 RS-232 通讯设置》 描述 RS-232 通讯参数的设置

《第七章 条码参数设置》 列出 soldier100/160 支持识读的所有码制并提供了相关的参数设置码

《附录》 提供常用设置码和出厂默认参数表等

关于本指南

本指南提供了产品的各种功能设置条码。通过扫描本指南中的设置功能条码,可以更改功能参数如通讯接口参数、识读工作模式、提示方式、数据处理和输出等。

产品在出厂时已经提供了适合大多数通常应用功能的参数配置,大多数情况下用户不需做调整就可以投入使用,在本指南的 附录中,列出了默认功能和参数,可供参考。在设置码的中标有(**)的选项,同样表示了默认的功能或参数。

手册图例

辅助工具,方便用户使用文档

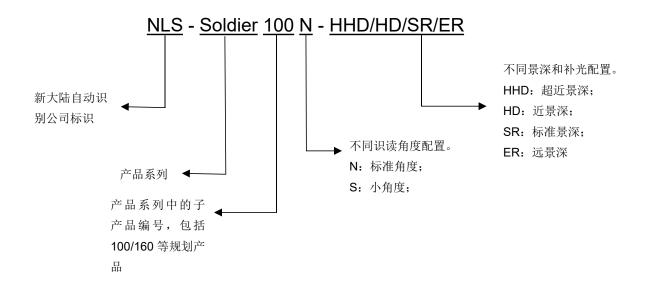
注意提示, 提示用户需要强烈注意此处的内容

小提示,帮助用户更好的理解文档内容

示例,帮助用户熟悉操作

第一章 关于 Soldier100/160 系列产品

设备简介


NLS-Soldier100/160 系列是针对工业自动化产线应用所设计的一款高性能固定式工业条码扫描器。该产品提供了丰富的产品特性,如高分辨率图像采集、带隔离的 I/O 触发、丰富的信号指示设计、快捷的上位机功能配置等。其采用紧凑、小型化、牢固的结构设计,可以快速集成到复杂的工业现场。

NLS-Soldier100/160 扫描器应用了国际领先的新大陆**UIMG**[®]智能图像识别技术,可识别各类主流一维条码及标准二维条码。可广泛应用于工业产线,如电子制造、电池生产、汽车制造等产线中的生产追溯、质量管理等。

设备主要特点

- 卓越的 DPM 解码能力
- 创新的光源照明系统
- 丰富的通讯接口
- 简单快速的配置方式
- 高防护等级与紧凑尺寸
- 多种型号满足多场景

型号

包装内配件清单

物品名称	规格/型号	数量	备注
NLS-Soldier100/160 扫描器	NLS-Soldier100-HD/SR		
	或 NLS-Soldier160N-HD/ER	1 ×	
	或 NLS-Soldier160S-ER		
RJ45 线缆	航空接头转 RJ45	1 ×	
USB+RS232+I/O 线盒线缆	DB25 转 RS232+USB+IO	1 ×	
	或航空头转 RS232+USB+IO		
快速使用指南	纸质文本	1 ×	
保修卡/合格证	纸质文本	1 ×	
支架	原色喷漆	1 ×	
支架螺丝	3*5 机牙螺丝	4 ×	

设备参数规格

Soldier100/160 系列固定式工业扫描器的参数规格如下:

表 1 参数规格表

	图像传感器	CMOS		照	明	白光 LED-	+红光 LED		
扫描性能	像素	752 × 480/1280 × 960		对	焦	红色点激光			
	识读码制	2D QR Code, DataMatrix, PDF417,Micro QR.							
		EAN-13,	EAN-8,	UPC-A, UPC	C-E, ISSN	, ISBN, Co	dabar, Code128, Co	ode93,	
		1D ITF-6, ITF-14, Interleaved 2 of 5, Industrial 2 of 5, Standard 2 of 5, Matrix 2							
		of 5, Cod	of 5, Code 39, Code 11, MSI-Plessey, Plessey, Deutsche14, Deutsche12.						
	识读精度*	Soldier100	Soldier100 ≥4mil						
		Soldier160	Soldier160 ≥2mil						
	条码灵敏度**	倾斜(pitch)			±5	0°			
		旋转(tilt)							
		偏转(skew)			±60)°			
	视场角度	Soldier100-SR	Soldie	100S-ER	Soldier1	160N-HD	Soldier160N-ER	Soldier160S-ER	
		H: 38.5°, V: 25.2°	H: 23.3°, V: 15°			H: 41°, V: 31°		H: 25°, V: 18.5°	
	符号反差*	≥25	≥25%						
机械/	通讯接口	USB,	RS-23	2, 10M/100M	以太网				
电气参数	触发输入光耦	最大 15mA (输入电源: 5V~30V); 2 路							
	信号输出光耦	最大 80mA (输入电源: ≤30V); 2 路							
	外观尺寸(mm)	45(W	45(W)×52(D)×25(H)						
	重量	260g							
	提示方式	蜂鸣器、指示灯							
	工作电压	10~3							
	电流@24VDC	电力消耗 最高 150mA , 3.6W 待机电流 60mA							
环境参数	工作温度		-20℃~50℃						
	存储温度		-40℃~+70℃						
	相对湿度		5%~95%(无凝结)						
	静电防护		±16 kV (空气放电), ±8 kV (直接放电)						
	防护等级	IP65							

^{*}测试条件:环境温度=23℃;环境照度=300 LUX 白炽灯;使用新大陆制定的测试样码

^{**}测试条件:测试距离=(最小景深+最大景深)/2; 环境温度=23℃; 环境照度=300 LUX 白炽灯

外观说明

按键与组件功能

- ①功能指示灯
- ② 安装孔*4
- ③ 白色 LED 灯*1
- ④红色 LED 灯*20

- ⑤ 镜头
- ⑥解码成功 LED 灯
- **⑦**标签
- ⑧ 数据线

- ⑨触发按键(TRIG)
- ①自学习按键(TUNE) ①以太网接口线

图 1. Soldier100/160 外部按键与组件功能说明

外观尺寸

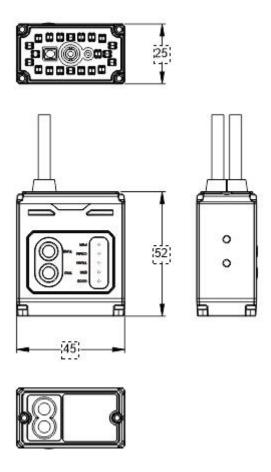
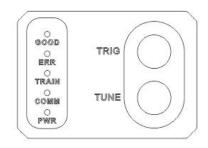



图 2. Soldier100/160 外观尺寸图

线缆尺寸 线缆名称 线缆尺寸 USB+RS232+I/O 线盒线缆 205mm (适用于 Soldier100 产品) 105mm 300mm 105mm USB+RS232+I/O 散线线缆 500 1500-(适用于 Soldier160 产品) 250-3000

表2线缆规格表

指示灯说明

LED	定义	颜色
GOOD	解码成功指示灯	绿色
ERR	解码失败指示灯	红色
TRAIN	自学习指示灯	橙色
СОММ	通讯指示灯	蓝色
PWR	电源指示灯	黄绿色

表 3. 指示灯说明

识读角度说明

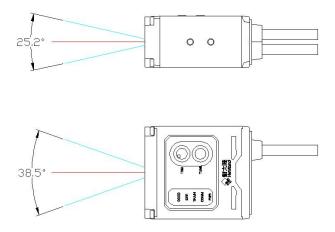
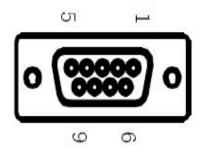



图 3. Soldier100/160 识读角度示意图

DB15 数据线接口定义

管脚	定义	类型	功能
2	RXD	1	RS232 接收
3	TXD	О	RS232 发送
5	GND	Р	地

表 4. DB9 数据线接口说明

I/O 接口说明

如表 2 所示, soldier100/160 可与三种类型的线缆连接:

- 1)I/O+USB: I/O 作为外触发输入/输出线缆,USB 提供数据通讯,由电源适配器或 IO 盒子供电;
- 2) I/O+RS232: I/O 作为外触发输入/输出线缆, RS232 提供数据通信,由电源适配器或 IO 盒子供电;
- 3) I/O+RJ45: I/O 作为外触发输入/输出线缆; RJ45 提供数据通信,由电源适配器或 IO 盒子供电。

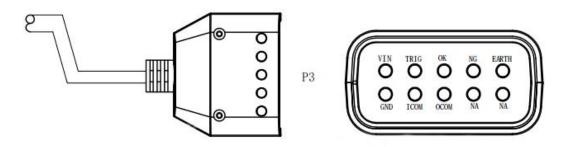


图 5. soldier100/160 I/O 接线盒子示意图

I/O 线缆包含了 10 个端口, 定义如下:

VIN	红	电源(10~30V)	
GND	黑	电源地	
I1A	棕	触发信号输入 1A	
I1B	粉	触发信号输入 1B	
I2A	绿	触发信号输入 2A	
I2B	灰	触发信号输入 2B	
01+	橙	扫码成功信号输出+	
01-	白	扫码成功信号输出-	
02+	黄	扫码失败信号输出+	
02-	紫	扫码失败信号输出-	

表 5. I/O 端口定义

采用外触发输入以及指示信号输出功能,可以快速构建工业自动化场景。

外触发输入端: 当带检测条码通过扫码器的扫码范围时,外部设备(如传感器)发送一个触发信号给扫码器的外触发输入端,扫码器立即进行解码工作;通过这种方式即实现快速的自动化扫码检测;

信号输出端:自动化检测也要求能对扫码是否成功进行判断和指示。Soldier100/160 提供了两个信号输出端口,用于与外部指示设备(如光源、信号指示灯、蜂鸣器、计数器)等相连接,O1 管脚可用于输出扫描/解码成功的信号; O2 管脚可用于输出扫描/解码失败的信号。

图 6 和图 7 为外触发输入与指示信号输出的电路连接示意图。

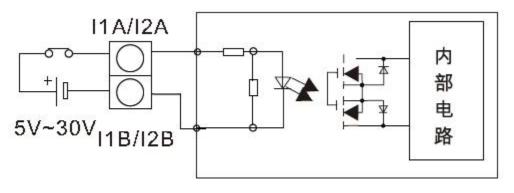


图 6. 触发输入电路连接示意图

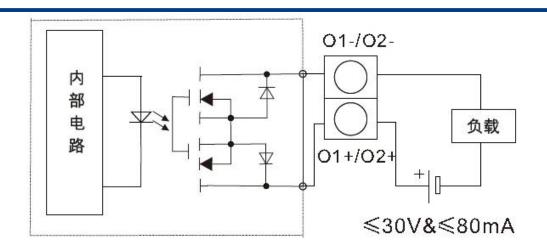


图 7. 指示信号输出电路连接示意图

注意:外触发输入的管脚电气要求为:5V≤输入电压≤30V。而信号输出,所提供的电源电压应≤30V,同时需要连接一个负载电阻,以保证电流不超过80 mA。

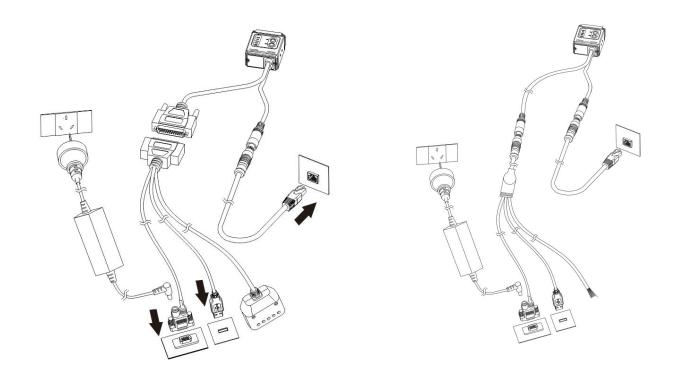
更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

通讯端口

必须与一台主机相连方能操作。主机可以是 PC 机, POS 机,或者带有 USB、RS232、RJ45 接口中任意一种的智能终端。

USB

RS232


RJ45

主机上的 RJ45 接口

连接至主机

USB/RS232/以太网数据线连接

将设备的 USB、RS232、以太网数据线直接与主机接口端相连。

以太网的默认设置为:

IP地址: 192.168.1.100

子网掩码: 255.255.255.0

网关地址: 192.168.1.1

注意: RS232+USB+I/O 线盒连接时, USB 端不供电。

维护与保养

- ◆ 识读窗口必须保持清洁,供应商不承担因不恰当维护造成的损害的保修责任。
- ◆ 避免坚硬粗糙的物体磨损或划伤识读窗口;
- ◆ 用毛刷去除识读窗口上的污点;
- ♦ 请使用柔软的布清洁窗口,例如眼镜清洁布;
- ♦ 请勿向窗口喷洒任何液体;
- ◆ 请勿使用除清洁水以外的任何清洁剂。

第二章 配套工具

Nset

Nset 是一款在 Windows 操作系统下运行的,由新大陆自动识别公司自主开发的设备条码、通讯等参数的配置软件。它可以通过 Nset 图形界面设置或查询设备配置,也可以通过指令的方式和设备直接交互。

通过 Nset 界面的"帮助"选项,可以获取 Nset 的使用手册。

Soldier100/160 系列产品配合 Nset 的新功能

Soldier 系列产品由于全新的结构与硬件,配合上专门为新大陆工业扫码设备研发的软件 Nset,Soldier 系列产品增加了很多新的功能。

多码扫码

设备可以读取同一画幅中的多个条码,根据条码的位置进行排序;

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

突发模式

突发模式应用于单个条码的快速移动使用场景,根据现场的移动速度,条码长度,间隔时间等,针对性设置并得到最 优设置。

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

宽适应模式

可以最多设置8组不同的曝光时间、增益值、照明灯颜色、红色 LED 光源布局等。扫码时按照每2帧的间隔时间改变曝光组合,进行轮询扫码。每次触发都按照设置的曝光组合从第一组开始轮询。

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

多区域解码 (ROI)

在条码环境比较复杂,或则在多个条码的同一个视野范围内时,只读取其中一个或者多个条码时,可以用到多区域解码(ROI)功能。最多可以设置 10 个框区域,每个框选区域必须完整涵盖涵盖需要解码的范围,即可解码。(配合多码设置可以精准读取多码)

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

组网模式

多台设备处于同一网段时,可以设置 1 台主机+n 台从机(从机数量最多不能超过 11 台,但是建议在 5-6 台)。此时触发任意一台设备,所有设备都会同时触发并开始扫码,最终结果都从主机发送。

更多相关设置信息,请参考文档《SOLDIER100/160 组网配置手册》

第三章 系统设置

简介

有三种方法可以对扫描器进行设置:

设置码

扫描器通过识读一系列特殊条码来设置选项和功能。在下面的章节里,我们会详细介绍可供设置的选项和功能并提供对应的设置码。

这种设置识读的方法比较直接,由于需要手动识读每个设置码,因而容易发生误设置。

设置命令

主机可以发送设置命令字符串对扫描器进行设置。在下面的章节里,除了介绍设置码,我们也将介绍设置命令字符串。利用设置命令对扫描器进行设置是可以自动化进行的。用户可以开发一套软件,将所有相关的设置数据都载入扫描器中。

Nset 设置

Nset 是一款运行在 Windows 系统下的图像用户界面程序,为新大陆自动识别公司自主研发,用于条码识读及处理。用 Nset 可以查看解码后的条码信息及扫描器摄取的图像,还可以很方便地对扫描器进行设置。

这种设置方法与设置命令很相似。Nset 是专为新大陆自动识别公司的产品而设计的。

提示:除了一些临时性的设置会在设备重启或断电后消失,其他功能设置信息将储存在扫描器中,不会因为关机而丢失。

设置标识

这是 USB 键盘设置码功能的标识。

该标识由四个部分组成:

- 1. 设置码的条码部分。
- 2. 与设置码相对应的设置命令字符串。
- 3. 设置的选项或者功能的名称,如 USB 键盘功能。
- 4. **表示该项设置为默认设置。

设置码信息

设置码信息可以被发送给主机。出厂默认设置是"不发送设置码信息",此时设置码信息不会被发送给主机;通过识读"发送设置码信息"的条码,扫描器会把设置码信息发送给主机。

** 不发送

照明灯

@ILLSCN1

** 开启

@ILLSCN0

关闭

照明灯选择

NLS-Soldier100/160 提供红色环形光源与白色点光源可以根据场景进行成像区域配光,选择不同位置的照明灯以满足不同扫码需求。

@ILLCLR0

**红色灯

白色灯

@ILLPS I

顶部灯

@ILLPST1 底部灯

顶部灯+底部灯

@ILLPST3 左侧灯

@ILLPST4
顶部灯+左侧灯

@ILLPST5 底部灯+左侧灯

顶部灯+底部灯+左侧灯

@ILLPST7 右侧灯

@ILLPST8

顶部灯+右侧灯

@ILLPST9 底部灯+右侧灯

@ILLPST1

顶部灯+底部灯+右侧灯

@ILLPST11

左侧灯+右侧灯

@ILLPST12

顶部灯+左侧灯+右侧灯

രു I PST13

底部灯+左侧灯+右侧灯

@ILLPST14

顶部灯+底部灯+左侧灯+右侧灯

照明灯亮度

瞄准灯

扫描/捕获图像时,扫描器投射一个红色圆点瞄准灯,用户可将目标条码定位在其视野内,从而使解码更容易。

- ◆ 开启:扫描器仅在条码扫描/捕获期间投射红色圆点瞄准灯。
- ◇ 常亮:扫描器通电后,瞄准灯常开。
- ♦ 关闭:瞄准灯一直处于关闭状态。

@AMLENA1

** 开启

LED 灯设置

解码成功 LED 灯设置

解码成功 LED 灯持续时间设置

可选择 20ms、120ms、220ms、320ms 的快速设定。

@GRLDUR20

** 短 (20ms)

@GRLDUR12

中 (120ms)

@GRLDUR22

长 (220ms)

@GRLDUR320

特长 (320ms)

@GRLDUR

解码成功 LED 灯持续时间自定义设置

(范围 20-10000ms)

设置解码成功 LED 灯持续时间为 800ms,可以按顺序识读以下条码来设置:

- 1. 识读"解码成功 LED 灯持续时间自定义设置"
- 2. 数据码"8", "0", "0" (见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)

提示音

开机提示音

@PWBENA

** 开启

@PWBENAC

关闭

解码成功声音设置

读取"关闭"可以禁止解码成功声音响起,读取"开启"即可恢复解码成功声音提示。

@GRBENA1

** 开启

@GRBENA0 关闭

解码成功声音持续时间设置

可以选择 40ms、80ms、120ms 的快速设定。

@GRBDUR40 短(40ms)

@GRBDUR120 长 (**120ms**)

@GRBDUR 解码成功声音持续时间自定义设置 (范围 20-300ms)

设置解码成功声音持续时间为 200ms,可以按顺序识读以下条码来设置:

- 1. 识读"解码成功声音持续时间自定义设置(范围 20-300ms)"
- 2. 数据码"2", "0", "0" (见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)

解码成功声音频率设置

@GRBFRQ800 最低(800Hz)

@GRBFRQ1600 低(1600Hz)

@GRBFRQ2730 中(2730Hz)

@GRBFRQ4200 **高(4200Hz)

@GRBFRQ

解码成功声音频率自定义设置

(范围: 20-20000Hz)

设置解码成功声音频率为 2000Hz, 可以按顺序识读以下条码来设置:

- 1. 识读"解码成功声音频率自定义设置"
- 2. 数据码"2", "0", "0", "0" (见附录-数据码)
- 1. 读"保存"(见附录-保存或取消)

解码成功声音次数设置

解码成功声音次数可以设置为1-9。

解码成功声音间隔时间设置

识读模式

- ◆ **电平触发模式**:按住触发键,启动读码;读码成功或松开触发键后,读码结束。
- ◆ **连续读码模式:** 开机后一直处于读码状态。按下并松开按键可以让扫描器在读码状态和停止读码状态之间切换。在这个模式下**,重读延时**可以用来防止同一个条码被读到多次。
- ◆ **脉冲模式:** 当按键按下,扫描器启动读码,直到读码成功或者达到**一次读码超时**的设定时间则停止读码。该模式下, 一次读码超时是从按键释放开始计时的。
- ◆ **突发模式**:通过按键或外部触发信号启动识读,启动后边取图边解码,最大缓存 32 张后停止取图,此时只进行解码,退出条件为解码成功,或者解完 32 张缓存图片,或再次按下按键才能启动识读。进入识读状态的条件:按键按下或外部触发信号。退出识读状态的条件:解码成功或者读码超时,或者解完 32 张缓存图片。退出识读状态后:等待按键按下或者外部触发输入。突发模式应用于单个条码的快速移动使用场景,根据现场的移动速度,条码长度,间隔时间等,针对性设置并得到最优设置。

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

@SCNMOD0

**电平触发模式

@SCNMOD3 连续读码模式

@SCNMOD4 脉冲模式

愛SCNMOD14 突发模式

一次读码超时

一次读码超时:扫描器处于读码状态的时间量。设置的时间范围是 0 到 3600000 毫秒,设置为 0 的时候,扫描器将一直处于读码状态。默认:3000 毫秒。

一次读码超时

设置一次读码超时时间为 1500 毫秒, 可以按顺序识读以下条码来设置:

- 1. 识读"一次读码超时"
- 2. 数据码"1", "5", "0", "0" (见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)

延迟设置

重读延迟

- ◆ 开启:连续读码模式下,如果扫描器读到一个条码并且在重读延迟时间内连续第二次读到这个条码,则第二次读到条码 将会忽略,不会输出。
- ♦ 关闭:重读延迟无效。扫描器在任何时候都可以连续识读同一个条码。
- ♦ 默认:重读延迟开启。

@RRDENA1

**开启

重读延迟时间

用于防止同一个条码被连续读到两次,重读延时设置的是允许连续识读到同一个类型和数据的条码的最小时间间隔。该延迟仅在自动读码模式和连续读码模式下使用,设置的时间范围是 1 到 3600000 毫秒,默认为 15000 毫秒。

重读延迟时间

设置重读延迟时间为 1000 毫秒, 可以按顺序识读以下条码来设置:

- 1. 识读"重读延迟时间"
- 2. 数据码"1", "0", "0", "0" (见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)

读码成功延迟

开启读码成功延时,则读码成功后的一段时间(读码成功延迟时间)内扫描器识读任意条码均不会识读成功。默认:关闭。

读码成功延迟时间

读码成功后暂停读码的时间长度,设置的时间范围是 1 到 3600000 毫秒,默认为500 毫秒。

读码成功延迟时间

设置读码成功延迟时间为 1000 毫秒, 可以按顺序识读以下条码来设置:

- 1. 识读"读码成功延迟时间"
- 2. 数据码"1", "0", "0", "0" (见附录-数据码)

3. 读"保存"(见附录-保存或取消)

解码超时

解码超时:一副图像的解码超时时间,超时将停止读码,默认为 500ms,设置范围 $1\sim3000ms$ 。

设置解码超时时间为800ms,可以按顺序识读以下条码来设置:

- 1. 识读"解码超时"
- 2. 数据码"8", "0", "0" (见附录-数据码)
- 3. 读"保存"(见附录-数据码)

识读偏好

@EXPLVL0

** 普通

@EXPLVL4 高运动容差

@EXPLVL5 屏幕识读模式

@EXPLVL6 宽适应模式

曝光设置

曝光参数限定

该功能决定扫描器拍照所用的曝光参数是否受最大曝光时间、最小曝光时间限定。

- ◇ 关闭: 拍照的曝光时间范围由扫描器固件控制。
- → 开启:拍照的曝光时间范围在"最大曝光时间"和"最小曝光时间"之间。

@EXPEEN 开启

设置最大曝光时间

@EXPEMX 最大曝光时间

设置最小曝光时间

@EXPEMN 最小曝光时间

增益参数限定

该功能决定扫描器拍照所用的增益参数是否受最大增益、最小增益限定。

- ♦ 关闭:拍照的增益范围由扫描器固件控制。
- ◆ 开启:拍照的增益范围在"最大增益"和"最小增益"之间。

@EXPGEN 开启

设置最大增益

@EXPGMX 最大增益

设置最小增益

@EXPGMN 最小增益

串行触发指令

识读模式设置为电平触发模式的时候,支持通过串行通讯命令"启动读码"命令触发读码,扫描器识读成功或者达到一**次读码超时**或者接收到"停止读码"命令后结束读码。

- ♦ 禁止:不使用串行触发指令。
- ◆ 使能:在电平触发读码模式下使用串行触发指令。

@SCNTCEC **禁止

@SCNTCE 使能

修改启动读码指令

启动读码指令可以模拟按键按下。指令支持 1 个到 10 个字符,字符的取值范围为 1 到 0xFF。首字符不能为 '?'(即 0x3F)。默认指令为: **<SOH> T <EOT>**

修改启动读码指令

修改停止读码指令

停止读码指令可以模拟按键松开。指令支持 1 个到 10 个字符,字符的取值范围为 1 到 0xFF。首字符不能为'?'(即 0x3F)。 默认指令为: **<SOH> P <EOT>**

@SCNTCP

修改停止读码指令

解码中心区域

- ◆ 全区域解码:选取拍摄的图像的全部区域(整幅图)用于解码,只输出读到的第一个条码。
- ◆ 多区域解码:在条码环境比较复杂,或则在多个条码的同一个视野范围内时,只读取其中一个或者多个条码时,可以用到多区域解码(ROI)功能。最多可以设置 10 个框区域,每个框选区域必须完整涵盖涵盖需要解码的范围,即可解码。(配合多码设置可以精准读取多码)

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

@CADENAO 全区域解码

禁止/允许读码

通过发送**禁止读码**和**允许读码**指令可以控制扫描器是否需要停止读码。默认为**允许识读**。

- ◆ **禁止读码:** 强制扫描器一直处于停止读码状态。扫描器重启或者收到允许读码指令,才会恢复为允许读码状态。禁止读码指令内容为: ~<SOH>0000#SCNENA0;<ETX>
- ◆ 允许读码:扫描器受配置的读码模式控制读码。允许读码指令内容为:~<SOH>0000#SCNENA1;<ETX>

传送读码未成功信息

- ◆ 使能:读码不成功时,按键释放或者读码超时后发送读码未成功信息。
- ♦ 禁止:读码不成功时,不会发送读码未成功信息。

修改读码未成功信息(NGR 信息)

读码未成功(NGR)信息支持 1 到 7 个字符,字符的取值范围为 0 到 0xff,默认: NG。

@NGRSET

修改读码未成功信息(NGR 信息)

图像预处理

图像预处理采用特殊的 DPM 算法来对图像进行修改以补偿图像缺陷,从而提高解码效率。

目前支持以下几种方式:高斯滤波,均值滤波,对比度拉伸,图像均衡化,腐蚀,膨胀,中值滤波等。用户可通过配置工具 NSet 进行设置。

多码同图

Soldier 系列支持只需一次按压扫描触发器即可采集多个条码并且可以根据实际需求设定多个条码的输出个数、输出顺序以及输出分隔符。

多码输出个数

- ♦ 解码总个数限制最大值: 1 张图像中解码个数限制最大值;
- ◆ 解码总个数限制最小值: 1 张图像中解码个数限制最小值。

@CCFDC

解码总个数限制最小值

@CCDFCA

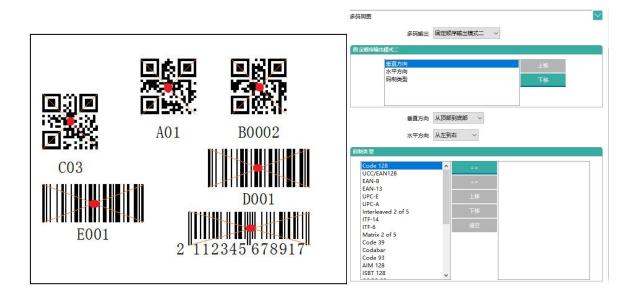
解码总个数限制最大值

多码输出模式

该功能决定多码同图时输出的顺序。

- ◆ 随机顺序输出:设置多码输出的顺序为随机;
- ◆ 固定顺序输出模式二:根据实际需要可以选择输出的顺序按照:垂直方向、水平方向、码制类型。

@ALLMSO


随机顺序输出

条码排序规则

条码排序以条码的中心点作为排序依据,并且排序方式有三种,垂直方向优先、水平方向优先和码制顺序优先,用户可通过配置工具 NSet 进行设置。

以下图多码为例,进行案例分析。如图所示,ABC条码为QR码,DE为CODE128,右下角为EAN-13条码。

- (1) 垂直方向优先,排序为从上到下,从左到右,则输出结果为 A01、B0002、C03、D001、E001、2112345678917;
- (2) 如果按照水平方向优先,则排序为从左到右,从上到下,则输出结果为 C03、E001、A01、2112345678917、D001、B0002;
- (3)如果按照码制优先,code128优先,按照从上到下,从左到右,则输出为 D001、E001、A01、B0002、C03、2112345678917;

修改多码分隔符

多码分隔符设置

更多相关设置信息,请参考文档《SOLDIER100/160 新功能及 IO 接线手册》

触发信号极性

设置用于触发扫描器读码的输入引脚(I1A/I1B, I2A/I2B)输入信号的极性。

@TRGSGN0 低电平触发

@TRGSGN1 **高电平触发

上升沿触发

@TRGSGN3 下降沿触发

读码成功指示信号(O1信号)

设置读码成功时扫描器(O1+/O1-引脚)是否输出指示信号。

@GRSENAC 关闭

@GRSENA1 开启

读码成功指示信号极性

@GRSAPL0

**低电平有效

**高电平有效

读码成功指示信号持续时间

读码成功指示信号持续时间设置的范围是 1 到 10000 毫秒。默认: 500 毫秒。

读码成功指示信号持续时间

设置读码成功指示信号持续时间为 1500 毫秒,可以按顺序识读以下条码来设置:

- 1. 读"启动设置"
- 2. 识读"读码成功指示信号持续时间"
- 3. 数据码"1", "5", "0", "0" (见附录-数据码)
- 4. 读"保存"(见附录-保存或取消)
- 5. 读"退出设置"

读码成功指示信号输出延迟时间

读码成功指示信号输出延迟时间设置的范围是 0 到 10000 毫秒。默认: 0 毫秒。

@GRSOD

读码成功指示信号输出延迟时间

E xample

设置读码成功指示信号持续时间为 1500 毫秒,可以按顺序识读以下条码来设置:

- 1. 读"启动设置"
- 2. 识读"读码成功指示信号输出延迟时间"
- 3. 数据码"1", "5", "0", "0" (见附录-数据码)
- 4. 读"保存"(见附录-保存或取消)
- 5. 读"退出设置"

读码未成功指示信号(O2信号)

设置读码未成功时扫描器(O2+/O2-引脚)是否输出指示信号

@NGSENA **关闭

开启

读码未成功指示信号极性

@NGSAPL

低电平有效

读码未成功指示信号持续时间

读码未成功指示信号持续时间设置的范围是 1 到 10000 毫秒。默认: 500 毫秒。

@NGSDU

读码未成功指示信号持续时间

设置读码未成功指示信号持续时间为 1500 毫秒,可以按顺序识读以下条码来设置:

- 1. 读"启动设置"
- 2. 识读"一次读码超时"
- 3. 数据码"1", "5", "0", "0" (见附录-数据码)
- 4. 读"保存"(见附录-保存或取消)
- 5. 读"退出设置"

读码未成功指示信号输出延迟时间

读码未成功指示信号输出延迟时间设置的范围是 0 到 10000 毫秒。默认: 0 毫秒。

读码未成功指示信号输出延迟时间

设置读码未成功指示信号输出延迟时间为 1500 毫秒,可以按顺序识读以下条码来设置:

- 1. 读"启动设置"
- 2. 识读"读码未成功指示信号输出延迟时间"
- 3. 数据码"1", "5", "0", "0" (见附录-数据码)
- 4. 读"保存"(见附录-保存或取消)
- 5. 读"退出设置"

自学习

Auto Tune 是新大陆针对复杂场景开发的自学习功能,可以实现自动检测和识别向其显示的单个代码,自动调整图像亮度并且开启相应码制,保存有关解码目标符号的相关信息,来快速实现解码性能的自动最优化配置。

使用按键启动自学习

开启使用按键启动自学习后,用户长按 TUNE 键 5 秒左右,可进入自学习状态,并且 TRAIN 灯闪烁,当图像处理和解码参数成功保存在扫描器内存中时,学习成功并且 TRAIN 灯将保持常亮。在学习的过程中,可短按 TRIG 键退出。

若超过30秒未完成自学习,扫描器将发出一声长滴声,并退出自学习,参数将恢复学习前的设置。

启动自动学习

开启自动学习功能后,TRAIN 指示灯会闪烁;学习成功后,TRAIN 指示灯灯常亮,同时会播成功音乐,扫描器将会保存最适合该场景的配置,仅使能用于学习的条码类型,并且关闭其余码制,但是设备不返回和保存相关参数。后续开机 TRAIN 指示灯会保持常亮;学习失败则 TRAIN 指示灯灯灭,且播放失败提示音。

默认设置

出厂默认设置

所有扫描器都有一个出厂的默认设置,读取"加载出厂默认设置"条码,将使扫描器的所有属性恢复成出厂状态。

在以下情况下您最有可能使用到此条码:

- ◆ 扫描器设置出错,如无法识读条码。
- ◆ 您忘记了之前对扫描器做过何种设置,而又不希望受之前的设置影响。

** 加载出厂默认设置

用户默认设置

除了出厂的默认设置外,您可以把您经常使用的设置存成用户默认设置。

用户默认设置也包含扫描器的所有属性设置,并且用户默认设置将被保存下来不会丢失,除非重新将当前设置存为用户默认设置。读取"保存用户默认设置"将保存当前设置为用户默认设置,并且覆盖掉之前设置过的用户默认设置。读取"加载用户默认设置"将使扫描器切换到用户默认设置的状态。

保存用户默认设置

@CUSDEF 加载用户默认设置

读取"加载出厂默认设置"条码,扫描器中保存的用户默认设置不会被删除。

产品信息查询

查询系统信息

您可以通过识读"查询系统信息"设置码来获得产品的相关信息。读此设置码后,扫描器会立即传送产品信息给主机。

系统信息内容:

名称	描述
Product Name	产品名称
Firmware Version	固件版本号
Decoder Version	解码器版本号
Hardware Version	硬件版本
Serial Number	产品序列号
OEM Serial Number	产品 OEM 序列号(ESN)
Manufacturing Date	产品生产日期

52

查询产品名称

您可以通过识读"查询产品名称"来获得产品的名称信息。读此设置码后,扫描器会立即传送产品名称给主机。

查询固件版本号

您可以通过识读"查询固件版本号"来获得设备固件版本号。读此设置码后,扫描器会立即传送固件版本号给主机。

查询解码器版本号

您可以通过识读"查询解码器版本号"来获得产品的解码库版本号。读此设置码后,扫描器会立即传送解码库版本号给主机。

查询硬件信息

您可以通过识读"查询硬件信息"来获得产品的硬件版本信息。读此设置码后,扫描器会立即传送硬件信息给主机。

查询产品序列号

您可以通过识读"查询产品序列号"来获得产品的序列号信息。读此设置码后,扫描器会立即传送产品序列号给主机。

查询产品生产日期

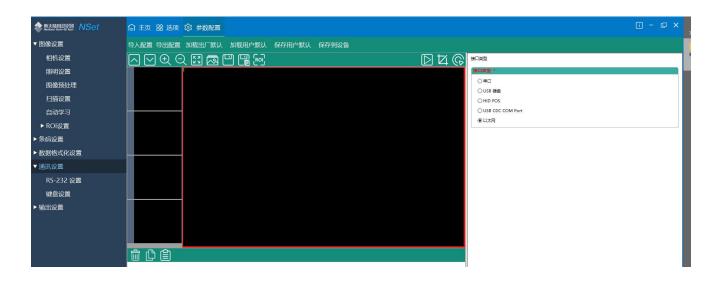
您可以通过识读"查询产品生产日期"来获得产品的生产日期。读此设置码后,扫描器会立即传送产品生产日期给主机。

查询产品 OEM 序列号

您可以通过识读"查询产品 OEM 序列号"来获得产品 OEM 序列号信息。读此设置码后,扫描器会立即传送产品 OEM 序列号给主机。

查询产品 OEM 序列号

第四章 以太网通讯设置


快速设置以太网通讯

您可以通过识读"以太网"来快速设置设备成为以太网通讯。读此设置码后,扫描器会改变通讯方式为以太网通讯。

设备 IP 配置

首先,确认通讯接口设置为以太网,如图

然后在 Nset 主界面单击需要配置 IP 地址的设备,并点击右侧的网络设置,如图

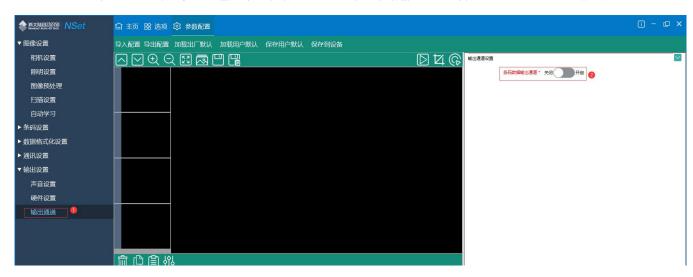
弹出网络设置的框,可以选择设置固定 IP 或者 DHCP(自动获取 IP),如下图:

勾选 DHCP,再点击确认,则使用 DHCP 模式获取 IP。若不勾选 DHCP,则表示使用固定 IP,那么需要配置上图中的 IP 地址、子网掩码和网关地址,而后点击确认。

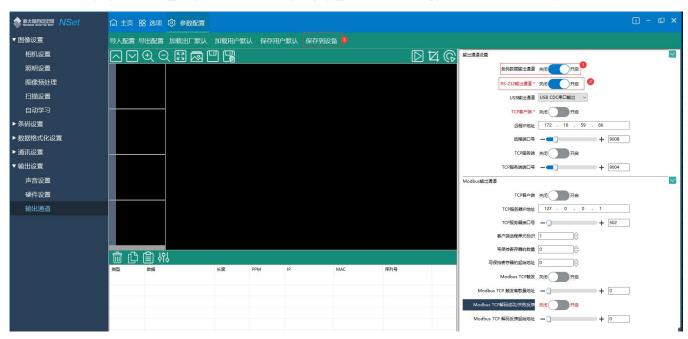
如果需要重置以太网的 IP,可以通过扫描 NETDEF 设置码恢复以太网默认设置。或者使用非以太网作为通讯接口(如使用 USB、串口),在通讯交互页面下输入命令 NETDEF 恢复以太网默认设置。

以太网的 IP 默认配置为:

IP: 192.168.1.100,

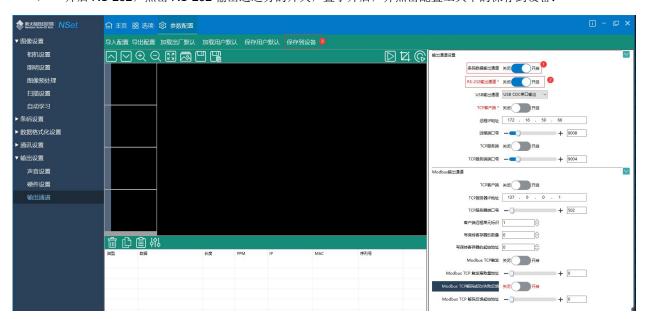

子网掩码: 255.255.255.0,

网关 192.168.1.1。

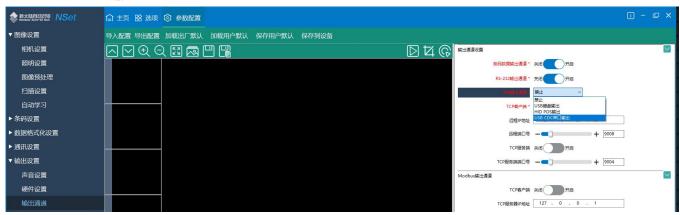

多码数据输出通道设置

Soldier100/160 的出厂线缆包括 USB、串口以及以太网。因此设备可以同时连接单个、双个以及三个接口类型用来同时输出扫码结果,或者在 RS-232,USB、TCP 客户端、TCP 服务端、Modbus TCP 客户端中选择你需要的开启。

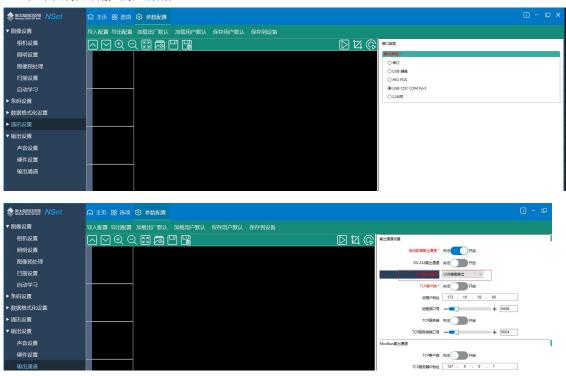
• 如果只想往所选择的接口类型中输出条码数据,选择关闭条码数据输出通道,并点击配置工具中的保存到设备,即可:



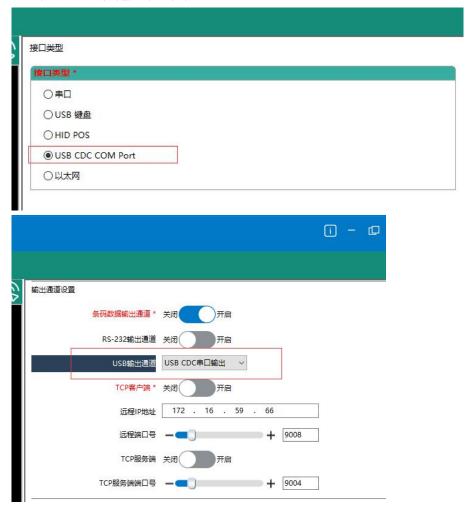
• 如果需要多个通道同时输出条码,则需要开启条码数据输出通道的选项,并点击配置工具中的保存到设备,如下图:


上图仅是开启条码数据输出通道,我司目前提供五种条码输出通道(RS-232、USB、TCP 客户端、TCP 服务端、Modbus TCP 客户端),根据需要开启。

▶ 开启 RS-232,点击 RS-232 输出通道旁的开关,置于开启,并点击配置工具中的保存到设备:

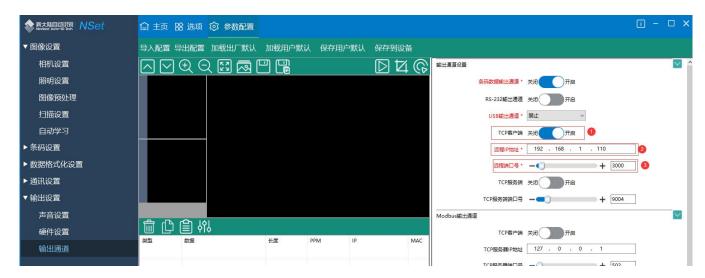

关闭 RS-232, 点击 RS-232 输出通道旁的开关,置于关闭,并点击配置工具中的保存到设备。

▶ 开启 USB 输出通道



USB 输出通道分为 USB 键盘输出,HID POS 输出及 USB CDC 串口输出,可以根据实际需求选择一种 USB 输出方式输出 条码。但是需要注意,如果在接口类型中,已经选择了某一种 USB 接口类型,则 USB 输出通道中只能选择这种接口类型输 出条码数据,其他 USB 接口类型将无法输出条码数据。(仅仅针对接口类型选择 USB 的情况)

例如:用户接口类型选择了 USB CDC COM PORT 输出,若在 USB 输出通道中选择 USB 键盘输出,则无法输出条码数据。如下图将无法输出条码数据:


例如:用户接口类型选择了 USB CDC COM Port 输出,若在 USB 输出通道中选择 USB CDC 串口输出,则可以输出条码数据。如下图将会输出条码数据:

关闭 USB 输出通道,选择 USB 输出通道旁的单选框,选择禁止,并点击配置工具中的保存到设备。

▶ 开启 TCP 客户端


点击 TCP 客户端旁的旁的开关,置于开启,并且配置远程 IP 地址及远程端口号,最后点击配置工具中的保存到设备,如下图所示。远程 IP 地址为用来接收条码数据的上位机 TCP 服务端的 IP 地址,远程端口号为上位机 TCP 服务端监听的端口号。

关闭 TCP 客户端,点击 TCP 客户端旁的开关,置于关闭,再点击配置工具中的保存到设备。

➤ 开启 TCP 服务端


点击 TCP 服务端旁的开关,置于开启,并且配置 TCP 服务端端口号,最后点击配置工具中的保存到设备,如下图所示。 TCP 服务端是提供给上位机 TCP 客户端连接,接收条码数据。 TCP 服务端的 IP 地址为设备的 IP 地址,如果需要更改,需要到设备管理界面修改,TCP 服务端端口号为 TCP 服务端所监听的端口号。

关闭 TCP 服务端,点击 TCP 服务端旁的开关,置于关闭,再点击配置工具中的保存到设备。

▶ 开启 Modbus TCP 客户端

点击 Modbus 输出通道中 TCP 客户端开关,置于开启,并且配置 TCP 服务端 IP 地址,TCP 服务端端口号,客户端远程单元标识,写保持寄存器数量,写保持寄存器的起始位置,重试时间间隔等选项,最后点击配置工具中的保存到设备,如下图所示。

关闭 Modbus TCP 客户端,点击 Modbus 输出通道中 TCP 客户端开关,置于关闭,再点击配置工具中的保存到设备。

第五章 USB 通讯设置

简介

当您使用 USB 方式连接扫描器和主机时,有以下四种连接方式可供选择,同时可根据客户实际需要进行默认方式设置:

- ◆ USB 键盘: 该方式将扫描器输入虚拟成 USB 键盘输入,无需通过 USB 接口进行命令设置,且条码数据中的数据可以用键盘按键直接输入,无需驱动,主机端也可以很方便地取得数据。
- ◆ USB CDC 串口:符合 USB 组织定义的 CDC 规范的接口,主机端虚拟成串口,主机端操作该串口与操作物理串口行为一致。需要在主机安装驱动。
- ◆ HID POS (POS HID Bar Code Scanner): 该方式基于 HID 接口,不需要自定义驱动,并且比模拟键盘接口和传统的 RS-232 串口的通讯速度快。

USB 键盘

USB 数据线连接状况下,可以将扫描器设置成 HID Keyboard 输入模式。在这种模式下,扫描器将成为一个虚拟键盘,数据接收主机像接受真实键盘输入一样接受此虚拟键盘的输入。扫描器解码得到数据后的发送过程便是敲击虚拟键盘中与数据对应的每一个按键。

若主机的输入框可以接受键盘输入,则扫描器采用这种通讯方式可以不需要其他任何辅助程序,直接将解码后的数据输入到主机的输入框中。

国家键盘布局

不同国家语言对应的键盘键位排布,符号等不尽相同。因此,扫描器可以根据需要虚拟成不同国家的键盘制式。默认为美国 制式的键盘。

@KBWCTY18 罗马尼亚

未知字符提示音

由于键盘布局的差异,条形码数据中包含的某些字符在选定的键盘上可能不可用。因此,扫描器无法传输未知字符。扫描下面的相应条形码,以便在检测到未知字符时启用或禁用发出蜂鸣声。

假设当前扫描器虚拟键盘制式对应语言为法语(编号为 7),用此扫描器识读内容为"ADF"的条码。由于条码数据中的一个字符"D"(0xD0)不在法语键盘所有可用的按键中,因此传输时扫描器将跳过此未知字符继续处理下一字符。

从实际使用场合看,如果未知字符提示音设置为"关闭",则扫描器传输时将无任何声音提示,传输到数据接收主机的数据为"AF";

如果未知字符提示音设置为"开启",则扫描器处理此字符时发出错误提示音,传输到数据接收主机的数据仍然为"AF"。

若开启了"键盘仿真输入字符"功能,则此功能无效。

键盘仿真输入字符

当键盘仿真输入字符开启后,字符将通过数字小键盘发送,会忽略国家键盘布局设置。这个模式还需要设置 Code Page 选择和 Unicode 输出。Code Page 决定了目标语言,Unicode 输出设置控制输入到主机的编码方式是 Unicode 还是 Code Page。

这种发送方式能确保任何字符都能被顺利传输,但因为每传送一个字符所需要模拟的按键过多,因此速度较慢。

假设当前扫描器 Code Page 选择为 Code Page 1252 (拉丁, 西欧),扫描器识读内容为"AÐF" (Code Page 1252 中十进制值分别为 65/208/70) 的条码。

如果键盘仿真输入字符设置为"开启", Unicode 输出设置为"关闭",则扫描器模拟键盘操作如下:

输入"A" -- ALT 键按下,同时顺序按动数字小键盘键 0,6,5,松开 ALT 键;

输入"Đ" -- ALT 键按下,同时顺序按动数字小键盘键 2,0,8,松开 ALT 键;

输入"F" -- ALT 键按下,同时顺序按动数字小键盘键 0,7,0,松开 ALT 键。

Code Page

代码页(Code Page)定义字符代码到字符的映射。如果收到的数据没有显示正确的字符,可能是因为正在扫描的条形码是使用不同于主机程序期望的代码页来创建的。如果是这种情况,请扫描以下设置码,选择创建条形码的代码页(如果是PDF417、QR Code、Aztec、Data Matrix 等条码,还需要在条码参数设置章节设置对应的字符编码方式)。设置后,条形码数据字符应该可以正确显示。"Code Page 选择"功能仅在键盘仿真输入字符功能开启后才生效。默认:Code Page 1252(拉丁,西欧)。

** Code Page 1252 (拉丁, 西欧)

Code Page 1251 (西里尔文)

@KBWCPG2 Code Page 1250(中欧)

@KBWCPG3 Code Page 1253(希腊语)

Code Page 1254 (土耳其语)

Code Page 1255 (希伯来语)

@KBWCPG6 Code Page 1256(阿拉伯语)

Unicode 输出

不同的应用软件对于接收的字符编码也有要求,如 MS Office 的 Word 采用的是 Unicode 编码,需要将 Unicode 输出设置为 "开启";而 MS Office 的 Excel 或记事本采用的是 Code Page 编码,需要将 Unicodes 输出设置为"关闭"。 "Unicode 输出" 功能仅在键盘仿真输入字符功能开启后才生效。默认:关闭。

控制字符输出

位于 0x00~0x1F 之间的 ASCII 字符可以被转义成为某个控制功能键。控制功能键的输入在虚拟键盘中的操作如下,具体的 ASCII 值与控制功能键的对应关系见下页附表。默认:关闭。

在扫描器的其它 HID Keyboard 相关设置为默认值,此项设置设置为控制字符输出"Control + ASCII模式"时,识读数据为"A <HT>F (HT 为不可见字符,不显示在终端软件上)"(16 进制值分别为0x41/0x09/0x46)的字符,扫描器虚拟键盘操作如下:

输入"A" -- 按下按键 A;

输入"Ctrl I" -- 由于 0x09 的数据对应控制功能键"I",因此虚拟键盘将按住 Ctrl 不放,接着按下 I 键,最后同时松开 Ctrl 键和 I 键;

输入"F" -- 按下按键 F。

由于"Ctrl l"在某些字处理软件中对应转换字符为斜体的功能,因此完成上述操作可能会看到正常字符"A"和斜体的"F"。

若已开启了"键盘仿真输入字符"的功能,则此功能无效。

控制字符对应表

ASCII Function	ASCII Value (HEX)	控制字符输出关闭	控制字符输出 Control + ASCII 模式
NUL	00	Null	Ctrl+@
SOH	01	Keypad Enter	Ctrl+A
STX	02	Caps Lock	Ctrl+B
ETX EOT	03 04	ALT Null	Ctrl+C Ctrl+D
ENQ	05	CTRL	Ctrl+E
ACK	06	Null	Ctrl+F
BEL	07	Enter	Ctrl+G
BS	08	Left Arrow	Ctrl+H
HT	09	Horizontal Tab	Ctrl+I
LF	0A	Down Arrow	Ctrl+J
VT	0B	Vertical Tab	Ctrl+K
FF	0C	Delete	Ctrl+L
CR	0D	Enter	Ctrl+M
SO	0E	Insert	Ctrl+N
SI	0F	Esc	Ctrl+O
DLE	10	F11	Ctrl+P
DC1	11	Home	Ctrl+Q
DC2	12	Print Screen	Ctrl+R
DC3	13	Backspace	Ctrl+S
DC4	14	tab+shift	Ctrl+T
NAK	15	F12	Ctrl+U
SYN	16	F1	Ctrl+V
ETB	17	F2	Ctrl+W
CAN	18	F3	Ctrl+X
EM	19	F4	Ctrl+Y
SUB	1A	F5	Ctrl+Z
ESC	1B	F6	Ctrl+[
FS	1C	F7	Ctrl+\
GS	1D	F8	Ctrl+]
RS	1E	F9	Ctrl+6
US	1F	F10	Ctrl+-

控制字符对应表(续)

上表中"控制字符输出 Control + ASCII 模式"时的 0x1B~0x1F 对应的是美国键盘布局,如果是其他国家键盘布局,请参考下表:

国家	代码						
United	Ctrl+ [Ctrl+\		Ctrl+6	Ctrl+-		
	Ctrl+ [Ctrl+]		<u> </u>		
Belgium	Ctrl+ [Ctrl+<	Ctrl+]	Ctrl+6	Ctrl+-		
Scandinavia	Ctrl+8	Ctrl+<	Ctrl+9	Ctrl+6	Ctrl+-		
France	Ctrl+^	Ctrl+8	Ctrl+\$	Ctrl+6	Ctrl+=		
Germany		Ctrl+Ã	Ctrl++	Ctrl+6	Ctrl+-		
Italy		Ctrl+\	Ctrl++	Ctrl+6	Ctrl+-		
Switzerland		Ctrl+<	Ctrl+	Ctrl+6	Ctrl+-		
United Kingdom	Ctrl+ [Ctrl+⊄	Ctrl+]	Ctrl+6	Ctrl+-		
Denmark	Ctrl+8	Ctrl+\	Ctrl+9	Ctrl+6	Ctrl+-		
Norway	Ctrl+8	Ctrl+\	Ctrl+9	Ctrl+6	Ctrl+-		
Spain	Ctrl+ [Ctrl+\	Ctrl+]	Ctrl+6	Ctrl+-		

按键延迟

此参数指定模拟按键之间的延迟。当主机需要较慢的数据传输时,扫描下面的相应条形码以增加延迟。 默认:无延迟。

大写锁定设置

当开启时,可以反转条形码数据中包含的大小写字符。无论主机键盘上 Caps Lock 键的状态如何,都会发生此反转。默认:关闭。

若开启了"键盘仿真输入字符"或"大小写转换"功能,则此功能无效。

开启此功能后,扫描器读取数据为"AbC"的条码,主机将得到"aBc"。

大小写转换

扫描下面的相应条形码将所有条形码数据转换为所需的情况。默认:不转换。

- ◆ 若设置为"全部转换为大写字母",则无论条码数据中字母是大写还是小写,全部转换为大写字母。
- ◆ 若设置为"全部转换为小写字母",则无论条码数据中字母是大写还是小写,全部转换为小写字母。

若开启了"仿真输入字符"功能,则此功能无效。

设置"全转换成小写字符",此时读取内容数据为"AbC"的条码,主机将得到"abc"的键盘输入。

模拟数字小键盘

数字字符采用数字小键盘

不开启此功能,则所有输出均按主键盘对应键值输出。

开启此功能后,扫描器识读到的条码数据中若包含数字"0~9",则虚拟键盘将按数字小键盘对应的键值输出。

数字小键盘如上图所示,一般位于键盘的最右侧,由左上角的 Num Lock 控制其键值是数字还是功能键。虚拟键盘不独立控制 Num Lock 状态,而是与主机实际键盘的 Num Lock 状态一致,因此如果主机实际键盘关闭了 Num Lock (Num Lock 灯熄灭),则扫描器虚拟数字小键盘后,输出的是功能键而非数字。

使用此功能前请务必先确认主机此时的 Num Lock 状态。若己开启了"仿真输入字符"的功能,则此功能无效。

开启"模拟数字小键盘"后,扫描器读内容为"A4.5"的条码。若主机"Num Lock"处于打开状态,则主机将得到"A4.5"的数据。若主机"Num Lock"处于关闭状态,则主机将依次得到以下键盘输入:首先得到"A"键,此字符不在数字键功能区中,因此正常发送;其次得到数字"4"对应的功能键 -- 光标左移的指令;

最后得到符号"."对应的功能键 -- 删除光标后一个字符的指令; 由于数字"5"没有对应的功能键,因此不产生按键输入。

字符 '+' , '-' , '*' , '/' 采用数字小键盘

轮询速度

键盘轮询速度可以通过以下设置码设置成 $1\sim10$ 毫秒。设置的数值越小,扫描器可以更快地将字符发送到主机。 如果主机会丢弃字符,请调大轮询速度设置值。

USB CDC 串口

当您使用 USB 连接,而同时又希望主机端采用串口方式接收数据,则应采用 USB 虚拟串口方式。从主机端系统接口来看,扫描器相当于通过串口方式与主机连接。

HID POS (POS HID Bar Code Scanner)

简介

HID POS 接口被推荐为新的应用软件使用。在一个单独的 USB 报文中它就能发送 56 个字符,并且比模拟键盘接口的速度快。特征:

基于 HID 接口,不需要定制驱动。

通讯速度比模拟键盘接口和传统的 RS-232 接口都快很多。

软件编程访问设备的方法

使用 CreateFile 把设备当成一个 HID 类型设备打开,然后使用 ReadFile 把扫描得到的数据传递给应用程序。使用 WriteFile 发送数据给设备。完整的 USB 和 HID 接口信息请参考: www.USB.org。

获取扫描数据

识读条形码成功之后,设备会发送以下的 Input 报文:

MXX/V-1/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A								
	Bit							
Byte	7	6	5	4	3	2	1	0
0		报文 ID = 0x02						
1		条码数据长度						
2-57	条码数据(1-56)							
58-61	保留							
62	新大陆条码类型识别符号 或 无用: 0x00							
63	-	-	-	-	-	-	-	解码数据继续

发送数据到设备

这个 Output 报文是用来发送数据到设备的。所有的通讯指令都可以采用这个方式发送到设备。

	Bit							
Byte	7	7 6 5 4 3 2 1 0						
0		Report ID = 0x04						
1		Length of the Data("Output Data" field)						
2-63	Output Data (1-62)							

VID 和 PID 表

USB 使用 2 个号码来识别设备并找到正确的设备。第一个号码是 VID (厂商 ID),由 USB Implementers Forum(USB 应用厂商论坛)指派。新大陆自动识别公司的厂商 ID (VID) 是 1EAB (十六进制)。 第二个号码是 PID (设备 ID)。每种新大陆自动识别的产品都有一个范围的 PID,每个 PID 号码都包含一个产品类型的基数和接口类型。

设备名称	接口类型	PID (十六进制)	PID(十进制)
	USB 键盘	3022	12322
Soldier100/160	USB CDC 串口	3006	12294
	HID POS	3010	12304

第六章 RS-232 通讯设置

简介

可以使用 RS-232 通讯,也叫做串口通讯方式。当扫描器与主机使用串口线连接时,双方需要设置相同的通讯参数以保证通讯的正常进行,需要设置的参数包含通讯的波特率(即传输速率),校验字符设置,数据位设置,停止位设置。

波特率

波特率是串口数据通讯是每秒传输的位数,扫描器和数据接收主机所使用的波特率须保持一致才能保证数据传输的准确。扫描器支持以下列出的波特率,单位是 bit/s。默认: 115200bps。

奇偶校验字符

扫描器在使用串口传输过程中可以选用不同的奇偶校验字符类型,但必须和主机的奇偶校验字符类型一致。

- ◆ 选择奇校验,若传输的数据中"1"的个数为奇数,则校验字符为 0。
- ◆ 选择偶校验, 若传输的数据中"1"的个数为偶数,则校验字符为0。
- ◆ 选择无校验,不发送奇偶校验字符。

数据位传输

可选择传输7,8位数据,请务必确保扫描器的数据位和数据接收主机的一致。

停止位

停止位位于传输的每个字节的最后部分,用来标志此字节传输完成可以开始接收下一字节数据。 默认设置 1 个停止位。如果需要停止较长时间,可以设置 2 个停止位。

第七章 条码参数设置

简介

每种类型的条码都有其独特的属性,通过本章的设置码可以调整扫描器适应这些属性变化。

开启"允许识读"的条码类型越少,扫描器的识读速度越快。您可以禁止扫描器识读不会使用到的条码类型,以提高扫描器的工作性能。

综合设置

使能所有条码

读取"使能识读所有条码",扫描器将识读所有可识读的条码。

禁止所有条码

读取"禁止读所有条码",扫描器将只能识读一维设置码,除设置码外的所有条码将无法识读。

使能所有一维码

禁止所有一维码

使能所有二维条码

禁止所有二维条码

F启"禁止所有二维条码"后,手册中二维特殊 DM 设置码将失效,需要使用配置工具 Nset 重新 F启 Data Matrix 或者扫描以下设置码。

启动设置

@DMCENA1 使能 Data Matrix

#SETUPE0 退出设置

全局快速解码提升

您可以通过开启"全局快速解码提升"选择优先检测图像中疑似码区,纸质等背景干净单一的条码,建议此开关打开,可快速提高优质码的解码速度。

图像亮度适配1

当发现拍摄的图像对比度低的情况下,可尝试调低此参数,提升解码体验。但是解码速度变慢,受图像噪声的干扰就大。调高此参数,低对比度的条码就不好解,但是抗噪性能好,解码速度快,该参数的取值范围为 1 到 100,默认为 15。

图像亮度适配 2

当发现拍摄的图像比较暗(亮)的情况下,可尝试调低、调高此参数,提升解码体验。调低此参数,适应低亮度的条码,但是解码速度变慢,受图像噪声的干扰就大。调高此参数,低亮度的条码不好解,但是抗噪性能好,解码速度变快,该参数的取值范围为 1 到 100,默认为 10。

1D 解码复杂度

您可以通过条码情况设置解码复杂度:

◆ 低:针对1D无污损,无褶皱等高质量条码;

- ◆ 中:有一定污损,褶皱等质量一般的条码;
- ◇ 高:条码印刷质量差,解码难度高;

1D 正反相

Code 11

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Code 11 条码,请尝试读取"使能"设置码,然后再试一次。

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Code 11 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节,最大 12 字节的 Code 11 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

校验

Code 11 条码数据中不强制包含校验字符,如果有校验字符,则可以是数据的最后 1 个或 2 个字符。校验字符是根据所有数据计算得出的值,用以校验数据是否正确。

因此,设置为"禁止"则扫描器将正常传输所有条码数据。

传送校验字符

传送校验字符设置为"不传送"时,若数据扣除校验字符后长度小于最小读码长度,则读码将失败。 例如: 当前扫描器设置中 Code 11 最小长度为 4 字节,不传送校验字符,此时要读取长度为 4 字节(长度包含了校验字符)的 Code11 将失败!

Code 128

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Code 128 条码,请尝试读取"使能"设置码,然后再试一次。

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Code 128 条形码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节,最大 12 字节的 Code 128 条码:

- 1. 读"最小长度"码
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

Code 39

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Code 39 条码,请尝试读取"使能"设置码,然后再试一次。

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Code 39 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节,最大 12 字节的 Code 39 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

校验

Code 39 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 1 个字节。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

使能,传送校验字符

设置为"使能,不传送校验字符"时,若数据长度扣除 1 字节的校验字符后小于最小读码长度限制,则读码将失败。

例如: 当前扫描器设置中 Code 39 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Code 39 将失败!

起始符与终止符

可以设置在读码成功后是否将起始符与终止符与条码数据一同传输。

Full ASCII

使能 Code 39 Full ASCII 可以打开识读完整的 ASCII 字符的功能

** 禁止 Code 39 Full ASCII

GS1-128 (UCC/EAN-128)

恢复出厂默认

使能/禁止识读

若扫描器无法识别 GS1-128 条码,请尝试读取"使能"设置码,然后再试一次。

AIM 128

恢复出厂默认

使能/禁止识读

若扫描器无法识别 AIM 128 条码,请尝试读取"使能"设置码,然后再试一次。

ISBT 128

恢复出厂默认

使能/禁止识读

若扫描器无法识别 ISBT 128 条码,请尝试读取"使能"设置码,然后再试一次。

Codabar

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Codabar 条码,请尝试读取"使能"设置码,然后再试一次。

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Codabar 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

校验

Codabar 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 1 个字节。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

@CBACHK2 使能,传送校验字符

设置为"使能,不传送校验字符"时,若数据长度扣除 1 字节的校验字符后小于最小读码长度限制,则读码将失败。例如: 当前扫描器设置中 Codabar 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Codabar 将失败!

起始符与终止符

Codabar 条码数据前后各有一个字节数据作为起始符与终止符,起始符与终止符是"A", "B", "C", "D"这四个字符中的一个,可以设置在读码成功后是否将起始符与终止符与条码数据一同传输。

起始符与终止符格式

Code 93

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Code 93 条码,请尝试读取"使能"设置码,然后再试一次。

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Code 93 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节,最大 12 字节的 Code 93 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

校验

Code 93 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 2 个字符。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 2 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 2 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

使能,传送校验字符

设置为"使能,不传送校验字符"时,若数据长度扣除2字节的校验字符后小于最小读码长度限制,则读码将失败。

例如: 当前扫描器设置中 Code 93 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Code 93 将失败!

UPC-A

恢复出厂默认

使能/禁止识读

若扫描器无法识别 UPC-A 条码,请尝试读取"使能"设置码,然后再试一次。

传送校验字符

2位扩展码

位扩展码指在普通条码后面追加的 2 位数字条码,下图为带 2 位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为 2 位扩展码:

5位扩展码

5 位扩展码指在普通条码后面追加的 5 位数字条码,下图为带 5 位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为 5 位扩展码:

设置为"识读 2 位扩展码"或"识读 5 位扩展码"后,扫描器既可识读普通条码与扩展码组成的新条码;也可识读不带扩展码的普通条码。设置为"不识读 2 位扩展码"或"不识读 5 位扩展码"后,普通条码与扩展码组成的新条码中扩展码的部分将不能被识读,普通条码的部分仍然可以正常识读。

必须附加扩展码

当必须附加扩展码设置为要求的时候,扫描器只识读包含扩展码的 UPC-A。

扩展码分隔符

当开启扩展码分隔符时,UPC-A条形码数据与扩展码数据之间会添加一个空格;关闭扩展码分隔符,空格随即消失。默认:关闭。

传送前导字符

前导字符是 UPC 符号的一部分,并包括国家代码(对于美国为"0")和系统字符("0")。

@UPAPRE0

** 不传送前导字符

(不传送国家编码与系统字符)

UPC-E

恢复出厂默认

使能/禁止识读

若扫描器无法识别 UPC-E 条码,请尝试读取"使能"设置码,然后再试一次。

传送校验字符

UPC-E 条码数据固定为8字节,其中最后1个字节为校验字符。

2位扩展码

2位扩展码指在普通条码后面追加的2位数字条码,下图为带2位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为2位扩展码:

5位扩展码

5 位扩展码指在普通条码后面追加的 5 位数字条码,下图为带 5 位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为 5 位扩展码:

设置为"识读 2 位扩展码"或"识读 5 位扩展码"后,扫描器既可识读普通条码与扩展码组成的新条码;也可识读不带扩展码的普通条码。设置为"不识读 2 位扩展码"或"不识读 5 位扩展码"后,普通条码与扩展码组成的新条码中扩展码的部分将不能被识读,普通条码的部分仍然可以正常识读。

必须附加扩展码

当必须附加扩展码设置为要求的时候,扫描器只识读包含扩展码的 UPC-E。

扩展码分隔符

当开启扩展码分隔符时,UPC-E条形码数据与扩展码数据之间会添加一个空格;关闭扩展码分隔符,空格随即消失。默认:关闭。

传送前导字符

前导字符是 UPC 符号的一部分,并包括国家代码(对于美国为"0")和系统字符("0")。

转换为 UPC-A

将 UPC-E 条码转换为 UPC-A 类型条码,然后条码信息依照 UPC-A 的设定处理。

EAN-8

恢复出厂默认

使能/禁止识读

传送校验字符

EAN-8 条码数据固定为8字节,其中最后1个字节为校验字符。

2位扩展码

2位扩展码指在普通条码后面追加的2位数字条码,下图为带2位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为2位扩展码:

5位扩展码

5 位扩展码指在普通条码后面追加的 5 位数字条码,下图为带 5 位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为 5 位扩展码:

设置为"识读 2 位扩展码"或"识读 5 位扩展码"后,扫描器既可识读普通条码与扩展码组成的新条码;也可识读不带扩展码的普通条码。设置为"不识读 2 位扩展码"或"不识读 5 位扩展码"后,普通条码与扩展码组成的新条码中扩展码的部分将不能被识读,普通条码的部分仍然可以正常识读。

必须附加扩展码

当必须附加扩展码设置为要求的时候,扫描器只识读包含扩展码的 EAN-8。

扩展码分隔符

当开启扩展码分隔符时,EAN-8条形码数据与扩展码数据之间会添加一个空格;关闭扩展码分隔符,空格随即消失。默认:关闭。

转换为 EAN-13

将 EAN-8 转换为 EAN-13 类型的条码,然后条码信息依照 EAN-13 的设定处理。

EAN-13

恢复出厂默认

使能/禁止识读

传送校验字符

2位扩展码

2位扩展码指在普通条码后面追加的2位数字条码,下图为带2位扩展码的条码,其中左边蓝色线框内为普通条码,右边红

色线框内为2位扩展码:

5位扩展码

5 位扩展码指在普通条码后面追加的 5 位数字条码,下图为带 5 位扩展码的条码,其中左边蓝色线框内为普通条码,右边红色线框内为 5 位扩展码:

设置为"识读 2 位扩展码"或"识读 5 位扩展码"后,扫描器既可识读普通条码与扩展码组成的新条码;也可识读不带扩展码的普通条码。设置为"不识读 2 位扩展码"或"不识读 5 位扩展码"后,普通条码与扩展码组成的新条码中扩展码的部分将不能被识读,普通条码的部分仍然可以正常识读。

必须附加扩展码

当必须附加扩展码设置为要求的时候,扫描器只识读包含扩展码的 EAN-13。

扩展码分隔符

当开启扩展码分隔符时,EAN-13 条形码数据与扩展码数据之间会添加一个空格;关闭扩展码分隔符,空格随即消失。默认:关闭。

EAN-13 以 290 起始必须有扩展码

- ◆ 要求: 以 290 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

EAN-13 以 378/379 起始必须有扩展码

- ◆ 要求: 以 378 或 379 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

EAN-13 以 414/419 起始必须有扩展码

- ◆ 要求: 以 414 或 419 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

EAN-13 以 434/439 起始必须有扩展码

- ◆ 要求: 以 434 或 439 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

EAN-13 以 977 起始必须有扩展码

- ◆ 要求: 以 977 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

EAN-13 以 978 起始必须有扩展码

- ◆ 要求: 以 978 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

EAN-13 以 979 起始必须有扩展码

- ◆ 要求: 以 979 为起始字符的 EAN-13 必须有扩展码扫描器才能识读成功。
- ◆ 不要求: 当必须附加扩展码设置为要求的时候,扫描器只识读有扩展码的 EAN-13;当必须附加扩展码设置为不要求的时候,扫描器可以识读任意 EAN-13。

ISBN

恢复出厂默认

使能/禁止识读

若扫描器无法识别 ISBN 条码,请尝试读取"使能"设置码,然后再试一次。如果仍然无法识读,请确认 EAN-13 是否开启。

ISBN 格式

ISSN

恢复出厂默认

使能/禁止识读

若扫描器无法识别 ISSN 条码,请尝试读取"使能"设置码,然后再试一次。如果仍然无法识读,请确认 EAN-13 是否开启。

Interleaved 2 of 5

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Interleaved 2 of 5 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Interleaved 2 of 5 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节,最大 12 字节的 Interleaved 2 of 5 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

Interleaved 2 of 5 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 1 个字节。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

Interleaved 2 of 5 条码的编码位数必须是偶数,校验字符包含在编码中,若编码为奇数,则在第 1 位前补 0。校验字符是制码时自动生成的。

@I25CHK2 使能,传送校验字符

设置为不传送校验字符时,若数据长度扣除 1 字节的校验字符后小于最小读码长度限制,则读码将失败。例如:当前扫描器设置中 Interleaved 2 of 5 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Interleaved 2 of 5 将失败。

Matrix 2 of 5

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Matrix 2 of 5 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Matrix 2 of 5 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节,最大 12 字节的 Matrix 2 of 5 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

Matrix 2 of 5 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 1 个字节。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◇ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

Matrix 2 of 5 条码的编码位数必须是偶数,校验字符包含在编码中,若编码为奇数,则在第 1 位前补 0。校验字符是制码时自动生成的。

设置为不传送校验字符时,若数据长度扣除 1 字节的校验字符后小于最小读码长度限制,则读码将失败。例如: 当前扫描器设置中 Matrix 2 of 5 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Matrix 2 of 5 将失败!

Industrial 2/5

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Industrial 2/5 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Industrial 2/5 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节, 最大 12 字节的 Industrial 25 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

Industrial 2/5 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 1 个字节。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

使能,传送校验字符

设置为不传送校验字符时,若数据长度扣除 1 字节的校验字符后小于最小读码长度限制,则读码将失败。例如: 当前扫描器设置中 Industrial 2/5 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Industrial 2/5 将失败!

ITF-14

恢复出厂默认

使能/禁止识读

例如允许识读 ITF-14 但禁止识读 Interleaved 2 of 5 码,根据 ITF-14 优先原则,会出现长度为 14 字节 且最后 1 个字节数据为校验字符的 Interleaved 2 of 5 码可以识读但其他类型的 Interleaved 2 of 5 码无 法识读的情况。

ITF-6

恢复出厂默认

使能/禁止识读

例如允许识读 ITF-6 但禁止识读 Interleaved 2 of 5 码,根据 ITF-6 优先原则,会出现长度为 6 字节且 最后 1 个字节数据为校验字符的 Interleaved 2 of 5 码可以识读但其他类型的 Interleaved 2 of 5 码无法 识读的情况。

Standard 2/5

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Standard 2/5 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Standard 2/5 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节, 最大 12 字节的 Standard 25 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

Standard 2/5 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 1 个字符。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 1 位数据进行校验,若校验通过则将校验字符作为正常数据最后 1 位一起传输,校验失败将不发送条码内容。

使能,传送校验字符

设置为"使能,不传送校验字符"时,若数据长度扣除 1 字节的校验字符后小于最小读码长度限制,则读码将失败。

例如: 当前扫描器设置中 Standard 2/5 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Standard 2/5 将失败!

COOP 25

恢复出厂默认

使能/禁止识读

若扫描器无法识别 COOP 25 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 COOP 25 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小8字节,最大12字节的COOP 25条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

COOP 25 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 2 个字符。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◆ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 2 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 2 位数据进行校验,若校验通过则将校验字符作为正常数据最后 2 位一起传输,校验失败将不发送条码内容。

使能,传送校验字符

Deutsche 14

恢复出厂默认

**Deutsche 14 出厂默认设置

使能/禁止识读

Deutsche 12

恢复出厂默认

**Deutsche 12 出厂默认设置

使能/禁止识读

Plessey

恢复出厂默认

使能/禁止识读

若扫描器无法识别 Plessey 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Plessey 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节, 最大 12 字节的 Plessey 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

Plessey 条码数据中不强制包含校验字符,如果有校验字符,则一定是数据的最后 2 个字符。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。

- ◆ 设置为"禁止",则扫描器将正常传输所有条码数据。
- ◇ 设置为"使能,不传送校验字符",则扫描器将根据条码最后 2 位数据进行校验,若校验通过则传输除最后一位校验字符外的正常数据,校验失败将不发送条码内容。
- ◆ 设置为"使能,传送校验字符",则扫描器将根据条码最后 2 位数据进行校验,若校验通过则将校验字符作为正常数据最后 2 位一起传输,校验失败将不发送条码内容。

使能,传送校验字符

设置为"使能,不传送校验字符"时,若数据长度扣除 2 字节的校验字符后小于最小读码长度限制,则读码将失败。

例如:当前扫描器设置中 Plessey 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 Plessey 将失败!

MSI Plessey

恢复出厂默认

使能/禁止识读

若扫描器无法识别 MSI-Plessey 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 MSI-Plessey 条码。

任何一维条码最大长度限制值不得超过 127, 若最大长度小于最小长度,则为仅识读这两种长度的条码。若最大长度等于最小长度,则仅支持此长度。

限制扫描器只识读最小 8 字节, 最大 12 字节的 MSI-Plessey 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"码(见附录-保存或取消)
- 4. 读"最大长度"码
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

MSI-Plessey 条码数据中不强制包含校验字符,如果有校验字符,则是数据的最后 1 个或 2 个字符。校验字符是除校验字符外所有数据计算得出的值,用以校验数据是否正确。设置为"禁止"则扫描器将正常传输所有条码数据。

传送校验字符

设置为"使能,不传送校验字符"时,若数据长度扣除 2字节的校验字符后小于最小读码长度限制,则读码将失败。

例如:当前扫描器设置中 MSI-Plessey 最小读码长度为 4 字节,不传送校验字符,此时要读取总长 4 字节的 MSI-Plessey 将失败!

PDF417

恢复出厂默认

使能/禁止识读

若扫描器无法识别 PDF417 条码,请尝试读取"使能"设置码,然后再试一次。

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 PDF417 条码。

读码最小长度设置(默认值: 1)

任何二维条码最大长度限制值不得超过 65535 字节,且最大长度限制值不得小于最小长度限制值。 如果你希望只读某一个固定长度的 PDF417 条码,那么可以将最小长度限制值设置为与最大长度限制 值相等。

限制扫描器只识读最小8字节,最大12字节的PDF417条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

PDF417 反相

PDF 有正、反相条码之分。

- ◆ 正相条码:浅色底,深色条的条码。
- ◆ 反相条码:深色底,浅色条的条码。

ECI 输出

字符编码方式

@PDFENC2; 自动选择 UTF-8 或 Code Page

QR Code

恢复出厂默认

使能/禁止识读

若扫描器无法识别 QR Code 条码,请尝试读取"使能"设置码,然后再试一次。

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 QR Code 条码。

任何二维条码最大长度限制值不得超过 65535 字节,且最大长度限制值不得小于最小长度限制值。 如果你希望只读某一个固定长度的 QR Code 条码,那么可以将最小长度限制值设置为与最大长度限制 值相等。

限制扫描器只识读最小 8 字节,最大 12 字节的 QR Code 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"码

QR 正反相

QR有正、反相条码之分。

◆ 正相条码:浅色底,深色条的条码。

♦ 反相条码:深色底,浅色条的条码。

字符编码方式

ECI 输出

QR 解码复杂度

您可以通过 QR 条码情况设置解码复杂度:

- ♦ 低:针对无污损,无褶皱等高质量条码;
- ◆ 中:有一定污损,褶皱等质量一般的条码;
- ♦ 高:条码印刷质量差,解码难度高;

连续码

您可以通过识读连续码"使能"设置码,设置扫描器可识读连续 QR 条码;识读"禁止"设置码,禁止扫描器识读连续 QR 条码。

打点码

您可以通过识读打点码"使能"设置码,设置扫描器可识读打点非连续 QR 条码;识读"禁止"设置码,禁止扫描器识读打点非连续 QR 条码。

镜像码

您可以通过识读镜像码"使能"设置码,设置扫描器可识读镜像 QR 条码;识读"禁止"设置码,禁止扫描器识读镜像条码。

QR 模型 1

您可以通过以下设置码设置禁止、使能 QR 模型 1。

QR 模型 2

QR 码的模型 2 是模型 1 的改良版,它在二维码变形的情况下也能顺利读取数据。

您可以通过以下设置码设置禁止、使能 QR 模型 2。

QRCM2E0 禁止

Micro QR

您可以通过以下设置码设置禁止、使能 Micro QR。

Data Matrix

恢复出厂默认

使能/禁止识读

设置读码长度

扫描器可以配置为仅识读长度在(包括)最小和最大长度之间的 Data Matrix 条码。

限制扫描器只识读最小 8 字节,最大 12 字节的 Data Matrix 条码:

- 1. 读"最小长度"
- 2. 读数据码"8"(见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)
- 4. 读"最大长度"
- 5. 读数据码"1"
- 6. 读数据码"2"
- 7. 读"保存"

矩形码

矩形码,此处特指长方形的 Data Matrix 条码。

Data Matrix 条码有两种格式:

- ◆ 长宽模块数一致的正方形码: 10*10, 12*12....144*144。
- ◆ 长宽模块数不一致的矩形码: 6*16, 6*14...14*22。

Data Matrix 正反相

Data Matrix 有正、反相条码之分。

- ◆ 正相条码:浅色底,深色条的条码。
- ◆ 反相条码:深色底,浅色条的条码。

字符编码方式

ECI 输出

ECC200

ECC0TO140

DM 解码复杂度

您可以通过 DM 条码情况设置解码复杂度:

- ♦ 低:针对无污损,无褶皱等高质量条码;
- ◆ 中:有一定污损,褶皱等质量一般的条码;
- ♦ 高:条码印刷质量差,解码难度高;

连续码

您可以通过识读连续码"使能"设置码,设置扫描器可识读连续 DM 条码,识读"禁止"设置码,禁止扫描器识读连续 DM 条码。

打点码

您可以通过识读打点码"使能"设置码,设置扫描器可识读打点非连续 DM 条码;识读"禁止"设置码,禁止扫描器识读打点非连续 DM 条码。

镜像码

您可以通过识读镜像码"使能"设置码,设置扫描器可识读镜像 DM 条码;识读"禁止"设置码,禁止扫描器识读镜像 DM 条码。

第八章 数据格式编辑

简介

您可以使用数据格式编辑功能更改扫描器的输出数据。例如,您可以使用数据格式编辑功能在条码数据的特定位置插入字符。

通常,当您扫描条形码时,会自动输出。但是创建数据格式时,必须使用"发送"命令(发送命令)才能让数据格式编辑功能输出数据。

一共可以设置四组数据格式,分别是数据格式 0,数据格式 1,数据格式 2,数据格式 3,可按实际需要对四组数据格式分别进行设置。设置之后才能正确使用。数据格式包括数据格式的应用范围(如条码类型、条码长度)以及数据编辑命令。当识读的条码与使用的数据格式不匹配时,扫描器发出错误提示音(如果已开启了"数据格式不匹配错误提示音")。

在进行数据格式编辑时,所有数据格式配置的总长度最大为2048字节。

数据格式编辑功能默认是关闭的,用户在使用前需要开启此功能。可以通过两种方式添加数据格式:一是通过 Nset 软件进行配置,二是通过识读设置码。

用户在改变数据格式设置后,识读"出厂默认数据格式"设置码可清除所有格式并恢复默认设置。

开启/关闭数据格式编辑

通过以下设置实现对数据格式编辑功能的关闭或开启。

♦ 关闭数据格式编辑

关闭数据格式编辑功能。

◇ 开启数据格式编辑,要求匹配,保留前后缀

开启数据格式编辑功能。与数据格式规则匹配的条码,按照数据格式要求输出,是否添加前后缀取决于前后缀的设置;与数据格式规则不匹配的条码不输出,扫描器发出错误提示音(如果已开启了"数据格式不匹配错误提示音")。

◇ 开启数据格式编辑,要求匹配,丢弃前后缀

开启数据格式编辑功能。与数据格式规则匹配的条码,按照数据格式要求输出,不添加前后缀(忽略前后缀的设置);与数据格式规则不匹配的条码不输出,扫描器发出错误提示音(如果已开启了"数据格式不匹配错误提示音")。

◇ 开启数据格式编辑,不要求匹配,保留前后缀

开启数据格式编辑功能。与数据格式规则匹配的条码按照数据格式要求输出,是否添加前后缀取决于前后缀的设置;与数据格式规则不匹配的条码按原始信息输出,是否添加前后缀取决于前后缀的设置。

◇ 开启数据格式编辑,不要求匹配,丢弃前后缀

开启数据格式编辑功能。与数据格式规则匹配的条码按照数据格式要求输出,不添加前后缀(忽略前后缀的设置);与数据格式规则不匹配的条码按原始信息输出,是否添加前后缀取决于前后缀的设置。

@DFMENA2 开启数据格式编辑,要求匹配, 丢弃前后缀

@DFMENA3 开启数据格式编辑,不要求匹配, 保留前后缀

@DFMENA4 开启数据格式编辑,不要求匹配, 丢弃前后缀

添加数据格式

步骤 1: 识读"添加数据格式"。

步骤 2: 选择数据格式

识读<u>数据码</u> "0" 或 "1" 或 "2" 或 "3" ,它们分别代表选择数据格式 $0\sim3$ 。

步骤 3: 依次识读<u>数据码</u> "6" "9" "9" "9"。

步骤 4: 选择条码序号

数据格式仅对指定类型的条码起作用。参考附录-<u>条码序号对照表</u>。条码序号由 3 个数据位组成。若设置数据格式对所有条码类型均有效,则设置条码序号为 999。例如只针对 EAN-13 做处理,则识读<u>数据码</u> "005"。

步骤 5: 设置条码数据长度

数据格式仅对指定长度的条码起作用。数据长度由 4 个数据位组成。例如设置条码数据长度为 32,则识读<u>数据码</u> "0032"。若设置数据格式对所有数据长度的条码均有效,则设置条码长度为 9999。

步骤 6: 设置数据格式编辑命令

扫描数据码来设置所需的数据编辑命令。例如,数据编辑命令为 F141,则识读<u>数据码</u> "F141"。数据编辑命令最大长度为 500 字符。详细命令请参考<u>数据格式编辑命令</u>。

步骤 7: 识读"保存"设置码。

xample

添加数据格式 0,该数据格式仅适用于数据长度为 10 字节的 Code 128,发送条码数据并在其末尾添加字符 "A",设置步骤如下:

- 1. 读"添加数据格式"
- 2. 添加数据格式 0,读数据码"0"
- 3. 读<u>数据码</u>"6" "9" "9" "9"
- 4. Code 128 条码序号 002,读数据码"0" "0" "2"
- 5. 条码长度为 10 字节,读<u>数据码</u>"0" "0" "1" "0"
- 6. 发送所有数据后发送"A",对应的数据格式编译命令为F141,读数据码"F""1""4""1"
- 7. 读"<u>保存</u>"

清除数据格式

清除数据格式配置有两种方法,一种是识读"清除所有数据格式"设置码,将所有数据格式全部清除;另一种是先识读"清除一组数据格式"设置码,再识读需要清除的那组数据格式的编号的<u>数据码</u>,再读取"<u>保存</u>"设置码,清除 4 组数据编辑格式配置中的一组。例如要清除"数据格式 2",先识读"清除一组数据格式"设置码,再识读数据码"2",最后识读"保存"。

选择数据格式

开启数据格式编辑功能以后,可以选择要使用哪一组数据格式,通过以下的四条设置码选择使用不同的数据格式。默认:数据格式 $\mathbf{0}$ 。

单次使用数据格式

单次使用数据格式是指只对设置之后识读的一个条码起作用,之后使用的数据格式将恢复到原先的数据格式。可以通过以下设置码选择单次使用的数据格式。例如,已经设置扫描器选择数据格式 3,但又希望在识读某个条码时使用数据格式 1,这种情况下就需在识读那个条码前扫描"单次使用数据格式 1"设置码。

数据格式不匹配错误提示音

如果开启了数据格式不匹配提示音,则在识读不符合数据格式要求的条码时,扫描器会发出错误提示音。

查询数据格式

◆ 查询当前的数据格式

获取当前配置的数据格式 0 到数据格式 3 的配置内容。

◆ 查询出厂默认的数据格式

获取出厂配置的数据格式 0 到数据格式 3 的配置内容。

查询到的所有数据格式配置内容格式如下:

Data Format 0:xxxx;

Data Format 1:xxxx;

Data Format 2:xxxx;

Data Format 3:xxxx;

数据格式编辑命令

使用数据格式编辑器就如同在输入数据字符串中移动虚拟光标。下列命令既可用于移动光标至不同位置,也可用于选择、替换、将数据插入最终输出等。命令中所涉及的十六进制值参考附录的《ASCII 码表》。

初始光标位置: 指向未经过数据格式编辑处理的原始条码信息的第一个字节。

1234567890ABCDEFGHT I

如以上条码,初始光标位置在"1"的左侧。

发送命令

F1 发送全部字符

命令格式=F1xx(xx: 待插入字符的十六进制值) 输出光标右侧的全部字符,然后输出字符 xx。

F2 发送若干个字符

命令格式=F2nnxx(nn: 00-99,发送的字符长度; xx: 待插入字符的十六进制值)输出光标右侧的的 nn 个字符,然后输出字符 xx。

F2 示例: 发送若干个字符

1234567890ABCDEFGHT I

发送上述条码内容的前 10 个字符,再发送一个回车。命令字符串: F2100D

F2: "发送若干个字符"命令

10: 发送的字符长度(从当前光标位置开始输出)

0D: 回车的十六进制值

输出结果: 1234567890<CR>

F3 发送某字符前的所有字符

命令格式=F3ssxx(ss:某字符的十六进制值;xx:待插入字符的十六进制值)

输出当前光标右侧至字符 ss 左侧之间的所有字符(不包括字符 ss),其后输出字符 xx。光标向右移至字符 ss 的左侧。

F3 示例: 发送某字符前的所有字符且在末尾添加一个字符

1234567890ABCDEFGHI 1

发送上述条码内容中"D"之前(不包括 D)的所有字符,再发送一个回车。

命令字符串: F3440D

F3: "发送某字符前的所有字符"命令

44: D 的十六进制值

0D: 回车的十六进制值

输出结果: 1234567890ABC<CR>

E9 发送末尾若干字符前所有字符

命令格式=E9nn (nn: 00-99, 不输出的末尾字符的长度)

输出当前光标右侧至末尾 nn 个字符前(左侧)的所有字符。光标移至最后一个发送字符的右侧(即末尾 nn 个字符的左侧)。

F4 多次发送一个字符

命令格式=F4xxnn(xx: 待插入字符的十六进制值; nn: 00-99, 字符输出的次数) nn 次输出字符 xx, 光标位置不变。

E9 和 F4 示例: 发送末尾若干字符前所有字符, 再发送两个 Tab

1234567890ABCDEFGHT I

发送上述条码内容末9位字符前的所有字符,再发送两个tab。

命令字符串: E909F40902

E9: "发送末尾若干字符前所有字符"命令

08: 不输出的末尾字符的长度

F4: "多次插入一个字符"命令

09: Horizontal tab 的十六进制值

02: 发送 Tab 的次数

输出结果: 1234567890A<tab><tab>

B3 插入码制名称

在输出信息中插入码制名称,不移动光标。

B4 插入条码长度

在输出信息中插入条码长度,不移动光标。条码长度以数字形式输出,且不包括前置零。

B3 和 B4 示例:插入码制名称和长度

1234567890ABCDEFGHIJ

发送上述条码的码制名称、长度和条码数据,间隔符使用空格,最后发送一个回车。

命令字符串: B3F42001B4F42001F10D

B3: "插入码制名称"命令

F4: "多次插入一个字符"命令

20: 空格的十六进制值

01: 发送空格的次数

B4: "插入条码长度"命令

F4: "多次插入一个字符"命令

20: 空格的十六进制值

01: 发送空格的次数

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: Code 128 20 1234567890ABCDEFGHIJ<CR>

移动命令

F5 向右移动光标若干个字符

命令格式=F5nn(nn: 00-99, 光标向右移动的字符数) 向右移动光标 nn 个字符。

F5 示例: 向右移动光标并发送条码数据

1234567890ABCDEFGHIJ

上述条码中,向右移动光标3个字符,发送光标右侧的所有条码数据,最后发送一个回车。

命令字符串: F503F10D

F5: "向右移动光标若干个字符"命令

03: 光标向右移动的字符数

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: 4567890ABCDEFGHIJ<CR>

F6 往左移动光标若干个字符

命令格式=F6nn(nn: 00-99, 光标往左移动的字符数)向左移动光标 nn 个字符。

F7 移动光标至起始位置

命令格式=F7

移动光标至输入信息的首字符的左侧。

EA 移动光标至末尾位置

命令格式=EA

移动光标至输入信息的末尾字符的左侧。

搜索命令

F8 向右搜索字符

命令格式=F8xx(xx: 待查找字符的十六进制值)

在输入信息中从当前光标位置开始向右搜索字符xx,光标移动到该字符的左侧。

F8 示例: 发送条码信息中某个字符及其后数据

1234567890ABCDEFGHI

在上述条码信息中搜索字母"D",发送字母"D"及其后数据,最后发送一个回车。

命令字符串: F844F10D

F8: "向右搜索字符"命令

44: "D"的十六进制值

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: DEFGHIJ<CR>

F9 向左搜索字符

命令格式=F9xx(xx: 待查找字符的十六进制值)

在输入信息中从当前光标位置向左搜索字符xx,光标移动到该字符的左侧。

B0 向右搜索字符串

命令格式=B0nnnnS(nnnn: 0000-9999, 待查找字符串的长度; S:字符串中所有字符的十六进制值)

在输入信息中从当前光标位置向右搜索字符串 S,光标移动该字符串的左侧。例如,B0000454657374 表示向右搜索首次出现的字符串"Test"。

B0 示例: 发送条码信息中某字符串及其后数据

1234567890ABCDEFGHIJ

在上述条码信息中搜索"FGH",发送"FGH"及其后数据,最后发送一个回车。

命令字符串: B00003464748F10D

B0: "向前搜索字符串"命令

0003: 字符串的长度(3个字符)

46: "F"的十六进制值

47: "G"的十六进制值

48: "H"的十六进制值

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: FGHIJ<CR>

B1 向左搜索字符串

命令格式=B1nnnnS(nnnn: 0000-9999, 待查找字符串的长度; S: 字符串中所有字符的十六进制值)

在输入信息中从当前光标位置向左搜索字符串 S,光标移动到该字符串的左侧。例如,B1000454657374 表示向左搜索首次出现的字符串"Test"。

E6 向右搜索不匹配字符

命令格式=E6xx(xx: 待查找的不匹配字符的十六进制值)

在输入信息中从当前光标位置向右搜索首个出现的与 xx 不匹配的字符,光标移动到该字符的左侧。

E6 示例: 删除条码信息中的前置零

0000123abc

上述条码信息中带前置零,要求发送前置零后面的条码数据。向右搜索首个非零字符,发送该字符及其后数据,最后发送一个回车。

命令字符串: E630F10D

E6: "向右搜索不匹配字符"命令

30: "0"的十六进制值

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: 123abc<CR>

E7 往左搜索不匹配字符

命令格式=E7xx(xx: 待查找的不匹配字符的十六进制值)

在输入信息中从当前光标位置向左搜索首个出现的与 xx 不匹配的字符,光标移动到该字符的左侧。

其他命令

FB 阻止输出字符

命令格式=FBnnxxyy..zz(nn:阻止输出的同一字符的数量;xxyy..zz:阻止输出字符的十六进制值)从当前光标右侧开始,阻止输出字符(最多可达 15 个不同字符),光标的移动由其他命令决定。

FB 示例: 删除条码信息中的空格等字符

12 34 5*6 78

上述条码信息中带空格、下划线和"*",要求删除这3种字符后发送其余数据。

命令字符串: FB03205F2AF10D

FB: "阻止输出字符"命令

03: 阻止 3 种字符

20: 空格的十六进制值

5F: "_"的十六进制值

2A: "*"的十六进制值

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: 12345678<CR>

E4 替换字符

命令格式= $E4nnxx_1xx_2yy_1yy_2...zz_1zz_2$ (nn: 被替换字符数+替换字符数; $xx_1:$ 被替换字符的十六进制值, $xx_2:$ 替换字符的十六进制值, $yx_2:$ 替换字符的十六进制值, $yx_3:$ 数替换字符的十六进制值, $yx_4:$ 数替换字符的十六进制值, $yx_5:$ 数据

从当前光标右侧开始,替换输出字符(最多可达 15 个字符),不移动光标。

E4 示例: 将条码信息中的零替换成回车

12304560780AB

当条码中含有主机应用不需要的字符时,可使用 E4 命令将不需要的字符替换成别的字符。此示例要求将条码中的零替换成回车。

命令字符串: E402300DF10D

E4: "替换字符"命令

02: 被替换字符数+替换字符数(0 替换成 CR,总计 2 个字符)

30: "0"的十六进制值

0D: 回车的十六进制值(用回车替换0)

F1: "发送全部字符"命令

0D: 回车的十六进制值

输出结果: 123

456

78

AB<CR>

BA 替换字符串多次

命令格式=BAnnNN₁SS₁NN₂SS₂(nn: 替换次数,nn=00 表示替换全部 SS₁; NN₁: 被替换字符串的长度; SS₁: 被替换字符串的十六进制值; NN₂: 新字符串的长度; SS₂: 新字符串的十六进制值)

从当前光标右侧开始,替换过程不移动光标。仅遍历原始信息一次,不做反复查找替换,字符串出现次数不足,不报错。 $NN_1>0$, $NN_2>=0$ 。

BA 示例: 将条码信息中的 23 替换成 XYZ

1234Abc23R0123U

命令字符串: BA020232330358595AF100

BA: "替换字符串多次"命令

02: 替换次数

02: 字符串 "23" 长度

3233: 字符串 "23" 的十六进制值

03: 字符串 "XYZ" 长度(如果设为 00 则其后不加字符串)

58595A: 字符串 "XYZ" 的十六进制值

F1: "发送全部字符"命令

00: 空字符的十六进制值

输出结果: 1XYZ4AbcXYZR0123U

EF 字符间延时,用于 USB 键盘的通讯模式

命令格式=EFnnnn(nnnn 表示延时时长为 5ms 的 nnnn 倍,用十进制表示)

在字符间插入一段延时,延时长度为 5ms 的倍数,最大可到 49995ms。最多可插入 255 段延时。

EF 示例: 在条码的第5个字符和第7个字符后插入延时

1234567890ABCDEFGHI I

命令字符串: F20500EF0200F20200EF0200F100

F2: "发送若干个字符"命令

05: 发送的字符长度(从当前光标位置开始输出)

00: NUL 的十六进制

EF: "延时"命令

0200: 延时长度为 5ms 的 200 倍, 即 1s

F2: "发送若干个字符"命令

02: 发送的字符长度(从当前光标右侧开始输出)

00: NUL 的十六进制

EF: "延时"命令

0200: 延时长度为 5ms 的 200 倍, 即 1s

输出结果: 12345{1s 延时}67{1s 延时}890ABCDEFGHIJ

第九章 前后缀设置

简介

扫描器解码成功后,获得一串数据,这串数据可以是数字,英文,符号等等,对于二维码还可以是汉字,这串数据就是条码所包含的数据信息。在实际应用中,我们可能不仅仅需要条码的数据信息,或者说条码所包含的数据信息不能满足您的需要。如您可能希望知道获得的这串数据信息是来自于哪一种类型的条码,或者想知道条码信息是在哪一天扫描的,或者您希望在扫描完一个条码后,记录条码的文本可以自动换行回车,而这些可能不包含在条码的数据信息中。

在制码时增加这些内容,势必增加条码长度且灵活性不够,不是提倡的做法。此时我们想到,人为的在条码的数据信息前面 或者后面增加一些内容,而且这些增加的内容,可以根据需求实时改变,可以选择增加或者屏蔽,这就是条码数据信息的前 后缀,增加前后缀的方法,即满足了需求又无需修改条码信息的内容。

条码处理的步骤:

- 1. 数据格式编辑
- 2. 添加前后缀
- 3. 数据打包
- 4. 添加结束符后缀

综合设置

所有前后缀

若设置为"禁止",则解码后的信息中只有条码的数据信息,没有前后缀。

若设置为"使能",则将在解码信息前后增加"CodeID 前缀", "AIM 前缀", "自定义前缀", "自定义后缀", "结束符后缀"。

前缀顺序

自定义前缀

自定义前缀在解码信息之前添加用户自定义的字符串。例如,允许添加自定义前缀并设置前缀为字符串"AB",识读数据为"123"的条码后,扫描器在"123"字符串前添加"AB"字符串,主机端接收到"AB123"。

修改自定义前缀

自定义首先读取"修改自定义前缀",然后按顺序读取要设置的前缀字符串中每个字节的 16 进制值,最后读取"保存设置"完成自定义前缀的设置。注意:自定义前缀字符串总长度不得超过 10 个字符,字符取值范围为 0x00~0xFF。

设置自定义前缀为"CODE"(16 进制值为 0x43/0x4F/0x44/0x45):

- 1. 读"修改自定义前缀"码
- 2. 读以下数据码: "4" "3" "4" "F" "4" "4" "4" "5"
- 3. 读"保存"码

这样设置完成后,只要自定义前缀设置为"使能",则读取任何条码,扫描器都将在数据前添加自定义前缀字符串"CODE"。

AIM ID 前缀

AIM 是 Automatic Identification Manufacturers(自动识别制造商协会)的简称,AIM ID 为各种标准条码分别定义了识别代号,具体定义见下表。扫描器在解码后可以将此识别代号添加在条码数据前,即 AIM 前缀。前缀格式:"]"+AIM 前缀+数字"0",如 Code 128 的 AIM ID 前缀为"]C0"。

用户不可自定义 AIM ID。

Code ID 前缀

除了 AIM 前缀可用于识别不同的条码类型外,用户也可以使用 Code ID 前缀来标识条码类型。与 AIM 前缀不同,每种条码类型所对应的 Code ID 前缀是可以自定义的。所有条码的 CodeID 为 1 个或 2 个字符,并且必须为字母,不能设为数字,不可见字符,或标点符号等。

默认 Code ID

修改 Code ID

修改 Code ID 和恢复 Code ID 出厂设置的方法请参考下列示例。

修改 PDF417 的 CodeID 为"p"(16 进制值为 0x70):

- 1. 读"PDF417"
- 2. 读数据码"7", "0"(见附录-数据码)
- 3. 读"保存"(见附录-保存或取消)

恢复包括 PDF417 在内的所有条码的 Code ID 为默认值:

1. 读"恢复默认 Code ID 设置"

修改一维条码 Code ID

@CID017 Code 93

@CID020 AIM 128

@CID021 ISBT128

@CID022 COOP 25

@CID023 ISSN

ISBN

Industrial 2/5

Plessey

@CID029 MSI Plessy

Deutsche 14

修改二维条码 Code ID

自定义后缀

自定义后缀就是在解码信息后添加用户自定义的字符串。

例如,允许添加自定义后缀并设置后缀为字符串"AB",识读数据为"123"的条码后,扫描器在"123"字符串后添加"AB"字符串,主机端接收到"123AB"。

修改自定义后缀

首先读取"修改自定义后缀",然后按顺序读取要设置的后缀字符串中每个字节的 16 进制值,最后读取"保存设置"完成自定义后缀的设置。注意:自定义后缀字符串总长度不得超过 10 个字符。

xample

设置自定义后缀为"CODE"(16 进制值为 0x43/0x4F/0x44/0x45):

- 1. 读"修改自定义后缀"设置码
- 2. 读以下数据码: "4" "3" "4" "F" "4" "4" "4" "5"
- 3. 读"保存"设置码

这样设置完成后,只要自定义后缀设置为"使能",则读取任何条码,扫描器都将在数据后添加自定义后缀字符串"CODE"。

结束符后缀

结束符后缀用于标志一段完整数据信息的结束。结束符后缀独立存在,不会参与任何其他形式的数据格式化;结束符后缀一定是一段数据发送时最后的内容,其后不会再有任何追加数据。

修改结束符后缀

首先读取"修改结束符后缀",然后按顺序读取要设置的后缀字符串中每个字节的 16 进制值,最后读取"保存设置"完成结束符后缀的设置。注意:结束符后缀字符串总长度不得超过 2 个字符。

第十章 批处理设置

简介

在识读设备需要进行多项设置时,逐个设置可能很繁琐,这时候我们可以把需要设置的所有信息存成一个条码信息,设备读取该条码后就可以完成多项设置。

以下为批处理设置准则:

- 1. 批处理命令中每条命令的格式为命令+参数。
- 2. 命令用分号结束,注意各条命令间不能有空格。
- 3. 将此命令在制码软件中制作为任意扫描器支持的条码即可,推荐用二维码。

例如: 开启照明灯(命令: ILLSCN1)、一次读码超时时间 2 秒(命令: ORTSET2000)、禁止识读 Interleaved 2 of 5 码的命令码(命令: I25ENA0),则批处理的命令内容如下(@表示指令需要存储):

@ILLSCN1;ORTSET2000;I25ENA0;

需要设置时读取"启动批处理设置",再读取制作好的批处理码可完成设置。

生成批处理指令

一条批处理命令可以包含很多条单独命令。每条单独命令由分号隔开。

命令结构:命令(+设置信息)。

- 一共有3种设置命令形式。
- 1、设置语法 1: 命令

这一形式的命令最多,就是不要借助数据码,一次设置就可以完成的设置命令。

例加.

设置波特率为 38400 的命令为@232BAD6

设置自动读码的命令为@SCNMOD2

2、设置语法 2: 命令+数字

这一形式的命令用于设置一些参数的值,这些参数包括:条码读码最大最小长度设置、一次读码超时设置、相同读码延迟设置、灵敏度设置等。

例如:

设置一次读码延迟的时间为 3000 毫秒的命令为: @ORTSET3000

设置解码成功声音持续时间为 100 毫秒的命令为: @GRBDUR100

3、设置语法 3: 命令+十六进制数

这一形式的命令可用于设置自定义前缀、自定义后缀、结束符后缀、CodelD等。

注意: 命令中每两个十六进制字符表示一个要设置的字符。

例如:

设置自定义前缀为"J"的命令为: @CPRSET4A

设置 Code128 的 CodeID 为"j"的命令为: @CID0026A

制作批处理条码

批处理条码可以采用任何扫描器支持且已使能的码制,建议采用二维条码。

例如,需要设置并保存: 照明灯开启,感应模式读码,修改一次读码超时时间为 2 秒,禁止识读 Interleaved 2 of 5 条码。指令为: "@ILLSCN1;SCNMOD2;ORTSET2000;I25ENA0;"。制作数据为 "@ILLSCN1;SCNMOD2;ORTSET2000;I25ENA0"的 PDF417 码如下:

使用批处理条码

按如下步骤依次识读设置码和批处理条码:

批办理设置码

附录

数据码

读取数据码完成后务必读取"保存"以保存数据码设置。

0~9

A~F

保存或取消

读完数据码后要读取保存码才能将读取到的数据保存下来。如果在读取数据码时出错,除了重新设置外,您还可以取消读取错误的数据。

如读取某个设置码,并依次读取数据"1", "2", "3", 此时若读取"取消前一次读的一位数据", 将取消最后读的数字"3", 若读取"取消前面读的一串数据"将取消读取到的数据"123", 若读取"取消当前设置"将连设置码一起取消, 但此时设备还处于启动设置状态。

默认设置表

参数名称	默认设置	备注
系统设置		
发送设置码信息	不发送	
照明灯	开启	
瞄准灯	开启	
照明灯颜色	红色灯	
解码成功 LED 灯	开启	
解码成功LED灯持续时间	短(20毫秒)	
开机提示音	开启	
解码成功声音	开启	
解码成功声音持续时间	中 (80 毫秒)	
解码成功声音频率	高(4200HZ)	
解码成功声音次数	1	1-9
解码成功声音间隔时间	短	
识读模式	电平模式	
一次读码超时	3000 毫秒	0-3600000 毫秒
识读间隔时间	500 毫秒	
重读延迟	开启	
重读延迟时间	15000 毫秒	1-3600000 毫秒
读码成功延迟	关闭	
读码成功延迟时间	500 毫秒	1-3600000 毫秒
解码超时	500 毫秒	1-3000 毫秒
识读偏好	普通	
禁止/允许读码	允许读码	
曝光参数限定	关闭	
增益参数限定	关闭	
图像亮度限定	关闭	
自定义图像亮度	80	
通讯接口	USB KBW	
解码中心区域	多区域解码	
图像大小	原始图像	
读码未成功(Not Good Read)信息	关闭	
设置解码未成功信息	NG	
RS-232 通讯设置		
波特率	115200	
奇偶校验	无校验	
数据位传输	8位	
停止位	1位	
硬件自动流控	关闭	
USB 通讯设置		
国家键盘布局	美国英语	
未知字符提示音	关闭	USB 键盘

键盘仿真输入字符	关闭	USB 键盘
Code Page	Code Page 1252 (拉丁,西欧)	USB 键盘
Unicode 输出	关闭	USB 键盘
控制字符输出	关闭	USB 键盘
按键延迟	无延迟	USB 键盘
大小写锁定设置	关闭	USB 键盘
大小写转换	不转换	USB 键盘
模拟数字小键盘		USB 键盘
数字字符采用数字小键盘	关闭	USB 键盘
字符 '+', '-', '*', '/'采用数字小键盘	关闭	USB 键盘
轮询速度	4 毫秒	USB 键盘
前导0	开启	
条码参数设置		·
全局解码快速提升	开启	
图像亮度适配 1	15	
图像亮度适配 2	10	
1D 解码复杂度	中	
1D 正反相	正反相都识读	
Code 128	I	
使能/禁止识读	使能	
最大长度	48	
最小长度	1	
EAN-8		
使能/禁止识读	使能	
传送校验字符	传送	
2 位扩展码	不识读 2 位扩展码	
5 位扩展码	不识读 5 位扩展码	
必须附加扩展码	不要求	
扩展码分隔符	关闭	
转换为 EAN-13	不转换	
EAN-13		
使能/禁止识读	使能	
传送校验字符	传送	
2 位扩展码	不识读 2 位扩展码	
5 位扩展码	不识读 5 位扩展码	
必须附加扩展码	不要求	
扩展码分隔符	关闭	
EAN-13 以 290 起始必须有扩展码	关闭	
EAN-13 以 378/379 起始必须有扩展码	关闭	
EAN-13 以 414/419 起始必须有扩展码	关闭	
EAN-13 以 434/439 起始必须有扩展码	关闭	
EAN-13 以 977 起始必须有扩展码	关闭	
EAN-13 以 978 起始必须有扩展码	关闭	
EAN-13 以 979 起始必须有扩展码	关闭	
UPC-E		

使能/禁止识读	使能	使能	
传送校验字符	传送	传送	
UPC-E0	识读 UPC-E0		
UPC-E1	不识读 UPC-E1		
2位扩展码	不识读 2 位扩展码		
5位扩展码	不识读 5 位扩展码		
必须附加扩展码	不要求		
扩展码分隔符	关闭		
传送前导字符	传送系统字符		
转换为 UPC-A	不转换为 UPC-A		
UPC-A			
使能/禁止识读	使能		
传送校验字符	传送		
2位扩展码	不识读2位扩展码		
5 位扩展码	不识读 5 位扩展码		
必须附加扩展码	不要求		
扩展码分隔符	关闭		
传送前导字符	传送系统字符		
Interleaved 2 of 5	·	·	
使能/禁止识读	使能		
最大长度	80		
最小长度	6	最小不能少于 4	
校验	禁止		
ITF-14	·	·	
使能/禁止识读	禁止		
ITF-6		·	
使能/禁止识读	禁止		
Matrix 2 of 5	·	·	
使能/禁止识读	使能		
最大长度	80		
最小长度	4	最小不能少于 4	
校验	禁止		
Code 39	·	·	
使能/禁止识读	使能		
最大长度	48		
最小长度	1		
校验	禁止		
起始符与终止符	不传送		
Codabar	·		
使能/禁止识读	使能		
最大长度	60		
最小长度	2		
校验	禁止		
起始符与终止符	不传送		
起始符与终止符格式	ABCD/ABCD	ABCD/ABCD 格式,大写字母	

Code 93		
使能/禁止识读	禁止	
最大长度	48	
最小长度	1	最小不得少于 1
校验	使能,不传送校验字符	
GS1-128(UCC/EAN-128)		'
使能/禁止识读	使能	
最大长度	48	
最小长度	1	
AIM 128		
使能/禁止识读	禁止	
最大长度	48	
最小长度	1	
传送校验字符	不传送	
ISBT 128		
使能/禁止识读	禁止	
Deutsche 14		
使能/禁止识读	禁止	
Deutsche 12		
使能/禁止识读	禁止	
COOP 25		
使能/禁止识读	禁止	
最大长度	48	
最小长度	1	
Code 11		·
使能/禁止识读	禁止	
最大长度	48	
最小长度	4	最小不得少于 4
校验	一位校验,MOD11	
传送校验字符	传送	
ISBN		·
使能/禁止识读	禁止	
ISBN 格式	ISBN-10	
ISSN		
使能/禁止识读	禁止	
Industrial 2/5		
使能/禁止识读	禁止	
最大长度	48	
最小长度	6	最小不得少于 4
校验	禁止	
Standard 2/5		
使能/禁止识读	禁止	
最大长度	48	
最小长度	6	最小不得少于 4
校验	禁止	
		·

Plessey		
使能/禁止识读	禁止	
最大长度	48	最小不得少于 4
最小长度	4	
校验	禁止	
MSI-Plessey	<u> </u>	
使能/禁止识读	禁止	
最大长度	48	
最小长度	4	最小不得少于 4
校验	一位校验,MOD10	
传送校验字符	传送	
QR Code		
使能/禁止识读	使能	
最大长度	7089	
最小长度	1	
QR 反相	识别正反向相条码	
字符编码方式	默认	
ECI 输出	使能	
解码复杂度	中	
连续码	使能	
打点码	使能	
镜像码	使能	
QR 模型 1	使能	
QR 模型 2	使能	
PDF417		
使能/禁止识读	使能	
最大长度	2710	
最小长度	1	
PDF417 反相	正反相条码都识别	
字符编码方式	默认	
Data Matrix		
使能/禁止识读	使能	
最大长度	3116	
最小长度	1	
矩形码	使能	
Data Matrix 反相	识别正反相条码	
字符编码方式	默认	
ECI 输出	使能	
ECC200	使能	
ECC0TO140	使能	
解码复杂度	中	
连续码	使能	
打点码	使能	
镜像码	使能	
数据格式编辑		

开启/关闭数据格式	禁止	
选择数据格式	数据格式 0	
数据格式不匹配错误提示音	开启	
前后缀设置		
所有前后缀	禁止	
前缀顺序	Code ID+自定义前缀+AIM ID	
自定义前缀	禁止	
AIM ID 前缀	禁止	
Code ID 前缀	禁止	
自定义后缀	禁止	
结束符后缀	使能	

AIM ID 列表

条码类型	AIM ID	可能的 AIM ID 限定参数(m)
Code128]C0	
GS1-128 (UCC/EAN-128)]C1	
EAN-8]E4	
EAN-8 with Addon]E3	
EAN-13]E0	
EAN-13 with Addon]E3	
UPC-E]E0	
UPC-E with Addon]E3	
UPC-A]E0	
UPC-A with Addon]E3	
Interleaved 2 of 5]lm	0, 1, 3
ITF-14]lm	1, 3
ITF-6]lm	1, 3
Matrix 2 of 5]X0	
Code 39]Am	0, 1, 3, 4, 5, 7
Codabar]Fm	0, 2, 4
Code 93]G0	
ISSN]X0	
ISBN]X0	
Industrial 25]S0	
Standard 25]R0	
COOP 25]X0	
Deutsche 12]X0	
Deutsche 14]X0	
AIM 128]C2	
Plessey]P0	
Code 11]Hm	0, 1, 3
MSI Plessey]Mm	0, 1
PDF417]Lm	0-2
QR Code]Qm	0-6
Data Matrix]dm	0-6
Micro QR]Q1	

参考资料: ISO/IEC 15424: 2008 信息技术 - 自动识别及数据获取技术 -数据载体标识符(包括符号表示标识符)

Code ID 列表

条码类型	Code ID
Code128	j
GS1-128 (UCC/EAN-128)	j
EAN-8	d
EAN-13	d
UPC-E	С
UPC-A	С
Interleaved 2 of 5	е
ITF-14	е
ITF-6	е
Matrix 2 of 5	V
Code 39	b
Codabar	а
Code 93	i
AIM 128	X
COOP 25	X
Deutsche 12	X
Deutsche 14	X
ISSN	g
ISBN	В
Industrial 2/5	I
Standard 2/5	f
Plessey	n
Code 11	Н
MSI Plessey	m
PDF417	r
QR Code	s
Data Matrix	u
Micro QR	X

条码序号对照表

条码类型	序号
Code 128	002
GS1-128 (UCC/EAN-128)	003
EAN-8	004
EAN-13	005
UPC-E	006
UPC-A	007
Interleaved 2 OF 5	008
ITF-14	009
ITF-6	010
Matrix 2 of 5	011
Code 39	013
Codabar	015
Code 93	017
AIM 128	020
COOP 25	022
ISSN	023
ISBN	024
Industrial25	025
Standard25	026
Plessey	027
Code11	028
MSI-Plessey	029
PDF417	032
QR Code	033
Data Matrix	035
Micro QR	043
Deutsche 14	128
Deutsche 12	129

ASCII 码表

十六进制	十进制	字符
00	0	NUL (Null char.)
01	1	SOH (Start of Header)
02	2	STX (Start of Text)
03	3	ETX (End of Text)
04	4	EOT (End of Transmission)
05	5	ENQ (Enquiry)
06	6	ACK (Acknowledgment)
07	7	BEL (Bell)
08	8	BS (Backspace)
09	9	HT (Horizontal Tab)
0a	10	LF (Line Feed)
0b	11	VT (Vertical Tab)
0c	12	FF (Form Feed)
0d	13	CR (Carriage Return)
0e	14	SO (Shift Out)
Of	15	SI (Shift In)
10	16	DLE (Data Link Escape)
11	17	DC1 (XON) (Device Control 1)
12	18	DC2 (Device Control 2)
13	19	DC3 (XOFF) (Device Control 3)
14	20	DC4 (Device Control 4)
15	21	NAK (Negative Acknowledgment)
16	22	SYN (Synchronous Idle)
17	23	ETB (End of Trans. Block)
18	24	CAN (Cancel)
19	25	EM (End of Medium)
1a	26	SUB (Substitute)
1b	27	ESC (Escape)
1c	28	FS (File Separator)
1d	29	GS (Group Separator)
1e	30	RS (Request to Send)
1f	31	US (Unit Separator)
20	32	SP (Space)
21	33	! (Exclamation Mark)
22	34	" (Double Quote)
23	35	# (Number Sign)
24	36	\$ (Dollar Sign)
25	37	% (Percent)
26	38	& (Ampersand)
27	39	` (Single Quote)
28	40	(Right / Closing Parenthesis)
29	41) (Right / Closing Parenthesis)

2a	42	* (Asterisk)
2b	43	+ (Plus)
2c	44	, (Comma)
2d	45	- (Minus / Dash)
2e	46	. (Dot)
2f	47	/ (Forward Slash)
30	48	0
31	49	1
32	50	2
33	51	3
34	52	4
35	53	5
36	54	6
37	55	7
38	56	8
39	57	9
3a	58	: (Colon)
3b	59	; (Semi-colon)
3c	60	< (Less Than)
3d	61	= (Equal Sign)
3e	62	> (Greater Than)
3f	63	? (Question Mark)
40	64	@ (AT Symbol)
41	65	A
42	66	В
43	67	C
44	68	D
45	69	E
46	70	F
47	71	G
48	72	Н
49	73	I
4a	74	J
4b	75	К
4c	76	L
4d	77	M
4e	78	N
4f	79	0
50	80	P
51	81	Q
52	82	R
53	83	S
54	84	Т
55	85	U
56	86	V

		T.,,
57	87	W
58	88	X
59	89	Υ
5a	90	Z
5b	91	[(Left / Opening Bracket)
5c	92	\ (Back Slash)
5d	93] (Right / Closing Bracket)
5e	94	^ (Caret / Circumflex)
5f	95	_ (Underscore)
60	96	' (Grave Accent)
61	97	а
62	98	b
63	99	С
64	100	d
65	101	e
66	102	f
67	103	g
68	104	h
69	105	i
6a	106	j
6b	107	k
6c	108	I
6d	109	m
6e	110	n
6f	111	0
70	112	р
71	113	q
72	114	r
73	115	s
74	116	t
75	117	u
76	118	V
77	119	W
78	120	X
79	121	у
7a	122	Z
7b	123	{ (Left/ Opening Brace)
7c	124	(Vertical Bar)
7d	125	} (Right/Closing Brace)
7e	126	~ (Tilde)
7f	127	DEL (Delete)
		